156 research outputs found

    Algorithms and Hardware Co-Design of HEVC Intra Encoders

    Get PDF
    Digital video is becoming extremely important nowadays and its importance has greatly increased in the last two decades. Due to the rapid development of information and communication technologies, the demand for Ultra-High Definition (UHD) video applications is becoming stronger. However, the most prevalent video compression standard H.264/AVC released in 2003 is inefficient when it comes to UHD videos. The increasing desire for superior compression efficiency to H.264/AVC leads to the standardization of High Efficiency Video Coding (HEVC). Compared with the H.264/AVC standard, HEVC offers a double compression ratio at the same level of video quality or substantial improvement of video quality at the same video bitrate. Yet, HE-VC/H.265 possesses superior compression efficiency, its complexity is several times more than H.264/AVC, impeding its high throughput implementation. Currently, most of the researchers have focused merely on algorithm level adaptations of HEVC/H.265 standard to reduce computational intensity without considering the hardware feasibility. What’s more, the exploration of efficient hardware architecture design is not exhaustive. Only a few research works have been conducted to explore efficient hardware architectures of HEVC/H.265 standard. In this dissertation, we investigate efficient algorithm adaptations and hardware architecture design of HEVC intra encoders. We also explore the deep learning approach in mode prediction. From the algorithm point of view, we propose three efficient hardware-oriented algorithm adaptations, including mode reduction, fast coding unit (CU) cost estimation, and group-based CABAC (context-adaptive binary arithmetic coding) rate estimation. Mode reduction aims to reduce mode candidates of each prediction unit (PU) in the rate-distortion optimization (RDO) process, which is both computation-intensive and time-consuming. Fast CU cost estimation is applied to reduce the complexity in rate-distortion (RD) calculation of each CU. Group-based CABAC rate estimation is proposed to parallelize syntax elements processing to greatly improve rate estimation throughput. From the hardware design perspective, a fully parallel hardware architecture of HEVC intra encoder is developed to sustain UHD video compression at 4K@30fps. The fully parallel architecture introduces four prediction engines (PE) and each PE performs the full cycle of mode prediction, transform, quantization, inverse quantization, inverse transform, reconstruction, rate-distortion estimation independently. PU blocks with different PU sizes will be processed by the different prediction engines (PE) simultaneously. Also, an efficient hardware implementation of a group-based CABAC rate estimator is incorporated into the proposed HEVC intra encoder for accurate and high-throughput rate estimation. To take advantage of the deep learning approach, we also propose a fully connected layer based neural network (FCLNN) mode preselection scheme to reduce the number of RDO modes of luma prediction blocks. All angular prediction modes are classified into 7 prediction groups. Each group contains 3-5 prediction modes that exhibit a similar prediction angle. A rough angle detection algorithm is designed to determine the prediction direction of the current block, then a small scale FCLNN is exploited to refine the mode prediction

    Hierarchical fast selection of intraframe prediction mode in HEVC

    Get PDF
    In the new HEVC standard, there are 35 intraframe prediction modes. Therefore, real-time implementations need fast mode pre-selection to reduce the computational load of cost comparison for individual modes. In this paper, a simple technique is proposed to reduce the complexity of the Unified Intra Prediction by decreasing the mode candidate number evaluated in the Rough Mode Decision step. We call this approach hierarchical as we decrease stepwise the angles between the directions of the prediction modes that are tested. Obviously, the fast mode selection results in significant complexity reduction obtained at the cost of choosing a sub-optimum mode related to slightly reduced compression performance. In the paper, it is proposed how to calculate the trade-off between encoder complexity and compression performance, using the ratio of relative coding time reduction and average bitrate increase estimated for constant decoded video quality. Extensive experiments prove that this ratio is much higher for the proposed technique than for many other techniques from the references

    Reducing Complexity on Coding Unit Partitioning in Video Coding: A Review

    Get PDF
    In this article, we present a survey on the low complexity video coding on a coding unit (CU) partitioning with the aim for researchers to understand the foundation of video coding and fast CU partition algorithms. Firstly, we introduce video coding technologies by explaining the trending standards and reference models. They are High Efficiency Video Coding (HEVC), Joint Exploration Test Model (JEM), and VVC, which introduce novel quadtree (QT), quadtree plus binary tree (QTBT), quadtree plus multi-type tree (QTMT) block partitioning with expensive computation complexity, respectively. Secondly, we present a comprehensive explanation of the time-consuming CU partitioning, especially for researchers who are not familiar with CU partitioning. The newer the video coding standard, the more flexible partition structures and the higher the computational complexity. Then, we provide a deep and comprehensive survey of recent and state-of-the-art researches. Finally, we include a discussion section about the advantages and disadvantage of heuristic based and learning based approaches for the readers to explore quickly the performance of the existing algorithms and their limitations. To our knowledge, it is the first comprehensive survey to provide sufficient information about fast CU partitioning on HEVC, JEM, and VVC

    Video Stream Adaptation In Computer Vision Systems

    Get PDF
    Computer Vision (CV) has been deployed recently in a wide range of applications, including surveillance and automotive industries. According to a recent report, the market for CV technologies will grow to $33.3 billion by 2019. Surveillance and automotive industries share over 20% of this market. This dissertation considers the design of real-time CV systems with live video streaming, especially those over wireless and mobile networks. Such systems include video cameras/sensors and monitoring stations. The cameras should adapt their captured videos based on the events and/or available resources and time requirement. The monitoring station receives video streams from all cameras and run CV algorithms for decisions, warnings, control, and/or other actions. Real-time CV systems have constraints in power, computational, and communicational resources. Most video adaptation techniques considered the video distortion as the primary metric. In CV systems, however, the main objective is enhancing the event/object detection/recognition/tracking accuracy. The accuracy can essentially be thought of as the quality perceived by machines, as opposed to the human perceptual quality. High-Efficiency Video Coding (HEVC) is a recent encoding standard that seeks to address the limited communication bandwidth problem as a result of the popularity of High Definition (HD) videos. Unfortunately, HEVC adopts algorithms that greatly slow down the encoding process, and thus results in complications in real-time systems. This dissertation presents a method for adapting live video streams to limited and varying network bandwidth and energy resources. It analyzes and compares the rate-accuracy and rate-energy characteristics of various video streams adaptation techniques in CV systems. We model the video capturing, encoding, and transmission aspects and then provide an overall model of the power consumed by the video cameras and/or sensors. In addition to modeling the power consumption, we model the achieved bitrate of video encoding. We validate and analyze the power consumption models of each phase as well as the aggregate power consumption model through extensive experiments. The analysis includes examining individual parameters separately and examining the impacts of changing more than one parameter at a time. For HEVC, we develop an algorithm that predicts the size of the block without iterating through the exhaustive Rate Distortion Optimization (RDO) method. We demonstrate the effectiveness of the proposed algorithm in comparison with existing algorithms. The proposed algorithm achieves approximately 5 times the encoding speed of the RDO algorithm and 1.42 times the encoding speed of the fastest analyzed algorithm
    corecore