95 research outputs found

    Efficient streaming for high fidelity imaging

    Get PDF
    Researchers and practitioners of graphics, visualisation and imaging have an ever-expanding list of technologies to account for, including (but not limited to) HDR, VR, 4K, 360°, light field and wide colour gamut. As these technologies move from theory to practice, the methods of encoding and transmitting this information need to become more advanced and capable year on year, placing greater demands on latency, bandwidth, and encoding performance. High dynamic range (HDR) video is still in its infancy; the tools for capture, transmission and display of true HDR content are still restricted to professional technicians. Meanwhile, computer graphics are nowadays near-ubiquitous, but to achieve the highest fidelity in real or even reasonable time a user must be located at or near a supercomputer or other specialist workstation. These physical requirements mean that it is not always possible to demonstrate these graphics in any given place at any time, and when the graphics in question are intended to provide a virtual reality experience, the constrains on performance and latency are even tighter. This thesis presents an overall framework for adapting upcoming imaging technologies for efficient streaming, constituting novel work across three areas of imaging technology. Over the course of the thesis, high dynamic range capture, transmission and display is considered, before specifically focusing on the transmission and display of high fidelity rendered graphics, including HDR graphics. Finally, this thesis considers the technical challenges posed by incoming head-mounted displays (HMDs). In addition, a full literature review is presented across all three of these areas, detailing state-of-the-art methods for approaching all three problem sets. In the area of high dynamic range capture, transmission and display, a framework is presented and evaluated for efficient processing, streaming and encoding of high dynamic range video using general-purpose graphics processing unit (GPGPU) technologies. For remote rendering, state-of-the-art methods of augmenting a streamed graphical render are adapted to incorporate HDR video and high fidelity graphics rendering, specifically with regards to path tracing. Finally, a novel method is proposed for streaming graphics to a HMD for virtual reality (VR). This method utilises 360° projections to transmit and reproject stereo imagery to a HMD with minimal latency, with an adaptation for the rapid local production of depth maps

    The development of optical projection tomography instrumentation and its application to in vivo three dimensional imaging of zebrafish

    Get PDF
    OPT is a three dimensional (3D) imaging technique that can produce 3D reconstructions of transparent samples, requiring only a widefield imaging system and sample rotation. OPT can be readily applied to chemically cleared samples, or to live transparent organisms such as nematodes or zebrafish. For preclinical imaging, there is a trade-off between optical accessibility and biological relevance to humans. Adult Danio rerio (zebrafish) represent a promising compromise, with greater homology to humans than smaller animals, and superior optical accessibility than mice. However, their size and physiology present a number of imaging challenges including non-negligible absorption and optical scattering, and limited time for image data acquisition if the fish are to be recovered for longitudinal studies. A key goal of this PhD thesis research was to develop OPT to address these challenges and improve in vivo imaging capabilities for this model organism. This thesis builds on previous work at Imperial where angularly multiplexed OPT using compressed sensing was developed and applied to in vivo imaging of a cancer-burdened adult zebrafish, with a sufficiently short OPT data acquisition time to allow recovery of the fish after anaesthesia. The previous cross-sectional study of this work was extended to a longitudinal study of cancer progression that I undertook. The volume and quality of data acquired in the longitudinal study presented a number of data processing challenges, which I addressed with improved automation of the data processing pipeline and with the demonstration that convolutional neural networks (CNN) could replace the iterative compressed sensing algorithm previously used to suppress artifacts when reconstructing undersampled OPT data sets. To address the issue of high attenuation through the centre of an adult zebrafish, I developed conformal-high-dynamic-range (C-HDR) OPT and demonstrated that it could provide sufficient dynamic range for brightfield imaging of such optically thick samples, noting that transmitted light images can provide anatomical context for fluorescence image data. To reduce the impact of optical scattering in OPT, I developed a parallelised quasi-confocal version of OPT called slice-illuminated OPT (slice-OPT) to reject scattered photons and demonstrated this with live zebrafish. To enable 3D imaging with short wave infrared (SWIR) light, without the requirement of an expensive Ge or InGaAs camera, I implemented a single pixel camera and demonstrated single-pixel OPT (SP-OPT) for the first time.Open Acces

    Multiresolution models in image restoration and reconstruction with medical and other applications

    Get PDF

    Quantitative analysis of spectroscopic Low Energy Electron Microscopy data: High-dynamic range imaging, drift correction and cluster analysis

    Get PDF
    For many complex materials systems, low-energy electron microscopy (LEEM) offers detailed insights into morphology and crystallography by naturally combining real-space and reciprocal-space information. Its unique strength, however, is that all measurements can easily be performed energy-dependently. Consequently, one should treat LEEM measurements as multi-dimensional, spectroscopic datasets rather than as images to fully harvest this potential. Here we describe a measurement and data analysis approach to obtain such quantitative spectroscopic LEEM datasets with high lateral resolution. The employed detector correction and adjustment techniques enable measurement of true reflectivity values over four orders of magnitudes of intensity. Moreover, we show a drift correction algorithm, tailored for LEEM datasets with inverting contrast, that yields sub-pixel accuracy without special computational demands. Finally, we apply dimension reduction techniques to summarize the key spectroscopic features of datasets with hundreds of images into two single images that can easily be presented and interpreted intuitively. We use cluster analysis to automatically identify different materials within the field of view and to calculate average spectra per material. We demonstrate these methods by analyzing bright-field and dark-field datasets of few-layer graphene grown on silicon carbide and provide a high-performance Python implementation

    Apprentissage Ă  grande Ă©chelle et applications

    Get PDF
    This thesis presents my main research activities in statistical machine learning aftermy PhD, starting from my post-doc at UC Berkeley to my present research position atInria Grenoble. The first chapter introduces the context and a summary of my scientificcontributions and emphasizes the importance of pluri-disciplinary research. For instance,mathematical optimization has become central in machine learning and the interplay betweensignal processing, statistics, bioinformatics, and computer vision is stronger thanever. With many scientific and industrial fields producing massive amounts of data, theimpact of machine learning is potentially huge and diverse. However, dealing with massivedata raises also many challenges. In this context, the manuscript presents differentcontributions, which are organized in three main topics.Chapter 2 is devoted to large-scale optimization in machine learning with a focus onalgorithmic methods. We start with majorization-minimization algorithms for structuredproblems, including block-coordinate, incremental, and stochastic variants. These algorithmsare analyzed in terms of convergence rates for convex problems and in terms ofconvergence to stationary points for non-convex ones. We also introduce fast schemesfor minimizing large sums of convex functions and principles to accelerate gradient-basedapproaches, based on Nesterov’s acceleration and on Quasi-Newton approaches.Chapter 3 presents the paradigm of deep kernel machine, which is an alliance betweenkernel methods and multilayer neural networks. In the context of visual recognition, weintroduce a new invariant image model called convolutional kernel networks, which is anew type of convolutional neural network with a reproducing kernel interpretation. Thenetwork comes with simple and effective principles to do unsupervised learning, and iscompatible with supervised learning via backpropagation rules.Chapter 4 is devoted to sparse estimation—that is, the automatic selection of modelvariables for explaining observed data; in particular, this chapter presents the result ofpluri-disciplinary collaborations in bioinformatics and neuroscience where the sparsityprinciple is a key to build intepretable predictive models.Finally, the last chapter concludes the manuscript and suggests future perspectives.Ce mémoire présente mes activités de recherche en apprentissage statistique après mathèse de doctorat, dans une période allant de mon post-doctorat à UC Berkeley jusqu’àmon activité actuelle de chercheur chez Inria. Le premier chapitre fournit un contextescientifique dans lequel s’inscrivent mes travaux et un résumé de mes contributions, enmettant l’accent sur l’importance de la recherche pluri-disciplinaire. L’optimisation mathématiqueest ainsi devenue un outil central en apprentissage statistique et les interactionsavec les communautés de vision artificielle, traitement du signal et bio-informatiquen’ont jamais été aussi fortes. De nombreux domaines scientifiques et industriels produisentdes données massives, mais les traiter efficacement nécessite de lever de nombreux verrousscientifiques. Dans ce contexte, ce mémoire présente différentes contributions, qui sontorganisées en trois thématiques.Le chapitre 2 est dédié à l’optimisation à large échelle en apprentissage statistique.Dans un premier lieu, nous étudions plusieurs variantes d’algorithmes de majoration/minimisationpour des problèmes structurés, telles que des variantes par bloc de variables,incrémentales, et stochastiques. Chaque algorithme est analysé en terme de taux deconvergence lorsque le problème est convexe, et nous montrons la convergence de ceux-civers des points stationnaires dans le cas contraire. Des méthodes de minimisation rapidespour traiter le cas de sommes finies de fonctions sont aussi introduites, ainsi que desalgorithmes d’accélération pour les techniques d’optimisation de premier ordre.Le chapitre 3 présente le paradigme des méthodes à noyaux profonds, que l’on peutinterpréter comme un mariage entre les méthodes à noyaux classiques et les techniquesd’apprentissage profond. Dans le contexte de la reconnaissance visuelle, ce chapitre introduitun nouveau modèle d’image invariant appelé réseau convolutionnel à noyaux, qui estun nouveau type de réseau de neurones convolutionnel avec une interprétation en termesde noyaux reproduisants. Le réseau peut être appris simplement sans supervision grâceà des techniques classiques d’approximation de noyaux, mais est aussi compatible avecl’apprentissage supervisé grâce à des règles de backpropagation.Le chapitre 4 est dédié à l’estimation parcimonieuse, c’est à dire, à la séléction automatiquede variables permettant d’expliquer des données observées. En particulier, cechapitre décrit des collaborations pluri-disciplinaires en bioinformatique et neuroscience,où le principe de parcimonie est crucial pour obtenir des modèles prédictifs interprétables.Enfin, le dernier chapitre conclut ce mémoire et présente des perspectives futures
    • …
    corecore