3,283 research outputs found

    Single-Strip Triangulation of Manifolds with Arbitrary Topology

    Full text link
    Triangle strips have been widely used for efficient rendering. It is NP-complete to test whether a given triangulated model can be represented as a single triangle strip, so many heuristics have been proposed to partition models into few long strips. In this paper, we present a new algorithm for creating a single triangle loop or strip from a triangulated model. Our method applies a dual graph matching algorithm to partition the mesh into cycles, and then merges pairs of cycles by splitting adjacent triangles when necessary. New vertices are introduced at midpoints of edges and the new triangles thus formed are coplanar with their parent triangles, hence the visual fidelity of the geometry is not changed. We prove that the increase in the number of triangles due to this splitting is 50% in the worst case, however for all models we tested the increase was less than 2%. We also prove tight bounds on the number of triangles needed for a single-strip representation of a model with holes on its boundary. Our strips can be used not only for efficient rendering, but also for other applications including the generation of space filling curves on a manifold of any arbitrary topology.Comment: 12 pages, 10 figures. To appear at Eurographics 200

    A Fast Algorithm for Well-Spaced Points and Approximate Delaunay Graphs

    Get PDF
    We present a new algorithm that produces a well-spaced superset of points conforming to a given input set in any dimension with guaranteed optimal output size. We also provide an approximate Delaunay graph on the output points. Our algorithm runs in expected time O(2O(d)(nlogn+m))O(2^{O(d)}(n\log n + m)), where nn is the input size, mm is the output point set size, and dd is the ambient dimension. The constants only depend on the desired element quality bounds. To gain this new efficiency, the algorithm approximately maintains the Voronoi diagram of the current set of points by storing a superset of the Delaunay neighbors of each point. By retaining quality of the Voronoi diagram and avoiding the storage of the full Voronoi diagram, a simple exponential dependence on dd is obtained in the running time. Thus, if one only wants the approximate neighbors structure of a refined Delaunay mesh conforming to a set of input points, the algorithm will return a size 2O(d)m2^{O(d)}m graph in 2O(d)(nlogn+m)2^{O(d)}(n\log n + m) expected time. If mm is superlinear in nn, then we can produce a hierarchically well-spaced superset of size 2O(d)n2^{O(d)}n in 2O(d)nlogn2^{O(d)}n\log n expected time.Comment: Full versio

    Minimum-weight triangulation is NP-hard

    Full text link
    A triangulation of a planar point set S is a maximal plane straight-line graph with vertex set S. In the minimum-weight triangulation (MWT) problem, we are looking for a triangulation of a given point set that minimizes the sum of the edge lengths. We prove that the decision version of this problem is NP-hard. We use a reduction from PLANAR-1-IN-3-SAT. The correct working of the gadgets is established with computer assistance, using dynamic programming on polygonal faces, as well as the beta-skeleton heuristic to certify that certain edges belong to the minimum-weight triangulation.Comment: 45 pages (including a technical appendix of 13 pages), 28 figures. This revision contains a few improvements in the expositio

    Lower bounds on the dilation of plane spanners

    Full text link
    (I) We exhibit a set of 23 points in the plane that has dilation at least 1.43081.4308, improving the previously best lower bound of 1.41611.4161 for the worst-case dilation of plane spanners. (II) For every integer n13n\geq13, there exists an nn-element point set SS such that the degree 3 dilation of SS denoted by δ0(S,3) equals 1+3=2.7321\delta_0(S,3) \text{ equals } 1+\sqrt{3}=2.7321\ldots in the domain of plane geometric spanners. In the same domain, we show that for every integer n6n\geq6, there exists a an nn-element point set SS such that the degree 4 dilation of SS denoted by δ0(S,4) equals 1+(55)/2=2.1755\delta_0(S,4) \text{ equals } 1 + \sqrt{(5-\sqrt{5})/2}=2.1755\ldots The previous best lower bound of 1.41611.4161 holds for any degree. (III) For every integer n6n\geq6 , there exists an nn-element point set SS such that the stretch factor of the greedy triangulation of SS is at least 2.02682.0268.Comment: Revised definitions in the introduction; 23 pages, 15 figures; 2 table
    corecore