6,279 research outputs found

    BICEP2 II: Experiment and Three-Year Data Set

    Full text link
    We report on the design and performance of the BICEP2 instrument and on its three-year data set. BICEP2 was designed to measure the polarization of the cosmic microwave background (CMB) on angular scales of 1 to 5 degrees (\ell=40-200), near the expected peak of the B-mode polarization signature of primordial gravitational waves from cosmic inflation. Measuring B-modes requires dramatic improvements in sensitivity combined with exquisite control of systematics. The BICEP2 telescope observed from the South Pole with a 26~cm aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new detector design in which beam-defining slot antenna arrays couple to transition-edge sensor (TES) bolometers, all fabricated on a common substrate. The antenna-coupled TES detectors supported scalable fabrication and multiplexed readout that allowed BICEP2 to achieve a high detector count of 500 bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree angular scales. After optimization of detector and readout parameters, BICEP2 achieved an instrument noise-equivalent temperature of 15.8 μ\muK sqrt(s). The full data set reached Stokes Q and U map depths of 87.2 nK in square-degree pixels (5.2 μ\muK arcmin) over an effective area of 384 square degrees within a 1000 square degree field. These are the deepest CMB polarization maps at degree angular scales to date. The power spectrum analysis presented in a companion paper has resulted in a significant detection of B-mode polarization at degree scales.Comment: 30 pages, 24 figure

    Better than a lens -- Increasing the signal-to-noise ratio through pupil splitting

    Full text link
    Lenses are designed to fulfill Fermats principle such that all light interferes constructively in its focus, guaranteeing its maximum concentration. It can be shown that imaging via an unmodified full pupil yields the maximum transfer strength for all spatial frequencies transferable by the system. Seemingly also the signal-to-noise ratio (SNR) is optimal. The achievable SNR at a given photon budget is critical especially if that budget is strictly limited as in the case of fluorescence microscopy. In this work we propose a general method which achieves a better SNR for high spatial frequency information of an optical imaging system, without the need to capture more photons. This is achieved by splitting the pupil of an incoherent imaging system such that two (or more) sub-images are simultaneously acquired and computationally recombined. We compare the theoretical performance of split pupil imaging to the non-split scenario and implement the splitting using a tilted elliptical mirror placed at the back-focal-plane (BFP) of a fluorescence widefield microscope

    APOLLO: the Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections

    Full text link
    A next-generation lunar laser ranging apparatus using the 3.5 m telescope at the Apache Point Observatory in southern New Mexico has begun science operation. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) has achieved one-millimeter range precision to the moon which should lead to approximately one-order-of-magnitude improvements in the precision of several tests of fundamental properties of gravity. We briefly motivate the scientific goals, and then give a detailed discussion of the APOLLO instrumentation.Comment: 37 pages; 10 figures; 1 table: accepted for publication in PAS

    Investigation of the Drosophila motion vision circuit using remote-focusing two-photon microscopy

    Get PDF

    Analysis of the neural circuit underlying the detection of visual motion in Drosophila melanogaster.

    No full text

    Analysis of the neural circuit underlying the detection of visual motion in Drosophila melanogaster

    Get PDF

    Online Switching Time Monitoring of SiC Devices Using Intelligent Gate Driver for Converter Performance Improvement

    Get PDF
    Most intelligent gate drivers designed for new state of the art WBG devices typically only focus on protection and driving capabilities of the devices. This paper introduces an intelligent gate driver that incorporates online switching time monitoring of silicon carbide (SiC) devices. For this specific case study, three timing conditions (turn-off delay time, turn-off time, and voltage commutation time) of a SiC phase-leg are online monitored. This online monitoring system is achieved through transient detection circuits and a micro-controller. These timing conditions are then utilized to develop converter-level benefits for a voltage-source inverter application using SiC devices. Junction temperature monitoring is realized through turn-off delay time monitoring. Dead-time optimization is achieved with turn-off time monitoring. Dead-time compensation is obtained with turn-off time and voltage commutation time monitoring. The case study converter assembled for testing purposes is a half-bridge inverter using two SiC devices in a phase-leg configuration. All timing conditions are correctly monitored within reasonable difference of the actual condition time. The half-bridge inverter can operate at 600 V DC input and successfully obtain a junction temperature measurement through monitored turn-off delay time and the calibration curve. In addition, dead-time control is realized to reduce device power loss and improve AC output power quality. Furthermore, the proposed online time monitoring system is board-level integrated with the gate driver and suitable for the chip level integration, enabling this practical approach to be cost-effective for end users

    Digital Signal Processing Group

    Get PDF
    Contains an introduction and reports on nineteen research projects.U.S. Navy - Office of Naval Research (Contract N00014-77-C-0266)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)National Science Foundation (Grant ECS80-07102)Bell Laboratories FellowshipAmoco Foundation FellowshipU.S. Navy - Office of Naval Research (Contract N00014-77-C-0196)Schlumberger-Doll Research Center FellowshipToshiba Company FellowshipVinton Hayes FellowshipHertz Foundation Fellowshi

    Design, Commissioning and Performance of the PIBETA Detector at PSI

    Full text link
    We describe the design, construction and performance of the PIBETA detector built for the precise measurement of the branching ratio of pion beta decay, pi+ -> pi0 e+ nu, at the Paul Scherrer Institute. The central part of the detector is a 240-module spherical pure CsI calorimeter covering 3*pi sr solid angle. The calorimeter is supplemented with an active collimator/beam degrader system, an active segmented plastic target, a pair of low-mass cylindrical wire chambers and a 20-element cylindrical plastic scintillator hodoscope. The whole detector system is housed inside a temperature-controlled lead brick enclosure which in turn is lined with cosmic muon plastic veto counters. Commissioning and calibration data were taken during two three-month beam periods in 1999/2000 with pi+ stopping rates between 1.3*E3 pi+/s and 1.3*E6 pi+/s. We examine the timing, energy and angular detector resolution for photons, positrons and protons in the energy range of 5-150 MeV, as well as the response of the detector to cosmic muons. We illustrate the detector signatures for the assorted rare pion and muon decays and their associated backgrounds.Comment: 117 pages, 48 Postscript figures, 5 tables, Elsevier LaTeX, submitted to Nucl. Instrum. Meth.
    corecore