269 research outputs found

    A Memory Bandwidth-Efficient Hybrid Radix Sort on GPUs

    Full text link
    Sorting is at the core of many database operations, such as index creation, sort-merge joins, and user-requested output sorting. As GPUs are emerging as a promising platform to accelerate various operations, sorting on GPUs becomes a viable endeavour. Over the past few years, several improvements have been proposed for sorting on GPUs, leading to the first radix sort implementations that achieve a sorting rate of over one billion 32-bit keys per second. Yet, state-of-the-art approaches are heavily memory bandwidth-bound, as they require substantially more memory transfers than their CPU-based counterparts. Our work proposes a novel approach that almost halves the amount of memory transfers and, therefore, considerably lifts the memory bandwidth limitation. Being able to sort two gigabytes of eight-byte records in as little as 50 milliseconds, our approach achieves a 2.32-fold improvement over the state-of-the-art GPU-based radix sort for uniform distributions, sustaining a minimum speed-up of no less than a factor of 1.66 for skewed distributions. To address inputs that either do not reside on the GPU or exceed the available device memory, we build on our efficient GPU sorting approach with a pipelined heterogeneous sorting algorithm that mitigates the overhead associated with PCIe data transfers. Comparing the end-to-end sorting performance to the state-of-the-art CPU-based radix sort running 16 threads, our heterogeneous approach achieves a 2.06-fold and a 1.53-fold improvement for sorting 64 GB key-value pairs with a skewed and a uniform distribution, respectively.Comment: 16 pages, accepted at SIGMOD 201

    Massiv-Parallele Algorithmen zum Laden von Daten auf Moderner Hardware

    Get PDF
    While systems face an ever-growing amount of data that needs to be ingested, queried and analysed, processors are seeing only moderate improvements in sequential processing performance. This thesis addresses the fundamental shift towards increasingly parallel processors and contributes multiple massively parallel algorithms to accelerate different stages of the ingestion pipeline, such as data parsing and sorting.Systeme sehen sich mit einer stetig anwachsenden Menge an Daten konfrontiert, die geladen und analysiert, sowie Anfragen darauf bearbeitet werden müssen. Gleichzeitig nimmt die sequentielle Verarbeitungsgeschwindigkeit von Prozessoren nur noch moderat zu. Diese Arbeit adressiert den Wandel hin zu zunehmend parallelen Prozessoren und leistet mit mehreren massiv-parallelen Algorithmen einen Beitrag um unterschiedliche Phasen der Datenverarbeitung wie zum Beispiel Parsing und Sortierung zu beschleunigen

    General Purpose Computation on Graphics Processing Units Using OpenCL

    Get PDF
    Computational Science has emerged as a third pillar of science along with theory and experiment, where the parallelization for scientific computing is promised by different shared and distributed memory architectures such as, super-computer systems, grid and cluster based systems, multi-core and multiprocessor systems etc. In the recent years the use of GPUs (Graphic Processing Units) for General purpose computing commonly known as GPGPU made it an exciting addition to high performance computing systems (HPC) with respect to price and performance ratio. Current GPUs consist of several hundred computing cores arranged in streaming multi-processors so the degree of parallelism is promising. Moreover with the development of new and easy to use interfacing tools and programming languages such as OpenCL and CUDA made the GPUs suitable for different computation demanding applications such as micromagnetic simulations. In micromagnetic simulations, the study of magnetic behavior at very small time and space scale demands a huge computation time, where the calculation of magnetostatic field with complexity of O(Nlog(N)) using FFT algorithm for discrete convolution is the main contribution towards the whole simulation time, and it is computed many times at each time step interval. This study and observation of magnetization behavior at sub-nanosecond time-scales is crucial to a number of areas such as magnetic sensors, non volatile storage devices and magnetic nanowires etc. Since micromagnetic codes in general are suitable for parallel programming as it can be easily divided into independent parts which can run in parallel, therefore current trend for micromagnetic code concerns shifting the computationally intensive parts to GPUs. My PhD work mainly focuses on the development of highly parallel magnetostatic field solver for micromagnetic simulators on GPUs. I am using OpenCL for GPU implementation, with consideration that it is an open standard for parallel programming of heterogeneous systems for cross platform. The magnetostatic field calculation is dominated by the multidimensional FFTs (Fast Fourier Transform) computation. Therefore i have developed the specialized OpenCL based 3D-FFT library for magnetostatic field calculation which made it possible to fully exploit the zero padded input data with out transposition and symmetries inherent in the field calculation. Moreover it also provides a common interface for different vendors' GPUs. In order to fully utilize the GPUs parallel architecture the code needs to handle many hardware specific technicalities such as coalesced memory access, data transfer overhead between GPU and CPU, GPU global memory utilization, arithmetic computation, batch execution etc. In the second step to further increase the level of parallelism and performance, I have developed a parallel magnetostatic field solver on multiple GPUs. Utilizing multiple GPUs avoids dealing with many of the limitations of GPUs (e.g., on-chip memory resources) by exploiting the combined resources of multiple on board GPUs. The GPU implementation have shown an impressive speedup against equivalent OpenMp based parallel implementation on CPU, which means the micromagnetic simulations which require weeks of computation on CPU now can be performed very fast in hours or even in minutes on GPUs. In parallel I also worked on ordered queue management on GPUs. Ordered queue management is used in many applications including real-time systems, operating systems, and discrete event simulations. In most cases, the efficiency of an application itself depends on usage of a sorting algorithm for priority queues. Lately, the usage of graphic cards for general purpose computing has again revisited sorting algorithms. In this work i have presented the analysis of different sorting algorithms with respect to sorting time, sorting rate and speedup on different GPU and CPU architectures and provided a new sorting technique on GPU

    Optimized Merge Sort on Modern Commodity Multi-core CPUs

    Get PDF
    Sorting is a kind of widely used basic algorithms. As the high performance computing devices are increasingly common, more and more modern commodity machines have the capability of parallel concurrent computing. A new implementation of sorting algorithms is proposed to harness the power of newer SIMD operations and multi-core computing provided by modern CPUs. The algorithm is hybrid by optimized bitonic sorting network and multi-way merge. New SIMD instructions provided by modern CPUs are used in the bitonic network implementation, which adopted a different method to arrange data so that the number of SIMD operations is reduced. Balanced binary trees are used in multi-way merge, which is also different with former implementations. Efforts are also paid on minimizing data moving in memory since merge sort is a kind of memory-bound application. The performance evaluation shows that the proposed algorithm is twice as fast as the sort function in C++ standard library when only single thread is used. It also outperforms radix sort implemented in Boost library
    • …
    corecore