408 research outputs found

    On receiver design for an unknown, rapidly time-varying, Rayleigh fading channel

    Get PDF

    Estimation of bit error rate in 2×2 and 4×4 multi-input multi-output-orthogonal frequency division multiplexing systems

    Get PDF
    Multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems with multiple input antennas and multiple output antennas in dynamic environments face the challenge of channel estimation. To overcome this challenge and to improve the performance and signal-to-noise ratio, in this paper we used the Kalman filter for the correct estimation of the signal in dynamic environments. To obtain the original signal at the receiver end bit error rate factor plays a major role. If the signal to noise ratio is high and the bit error rate is low then signal strength is high, the signal received at the receiver end is almost similar to the ith transmitted signal. The dynamic tracking characteristic of Kalman filter is used to establish a dynamic space-time codeword and a collection of orthogonal pilot sequences to prevent interference among transmissions in this paper. Using the simulation, the Kalman filter method can be compared to the other channel estimation method presented in this paper that can track time-varying channels rapidly

    Efficient joint channel equalization and tracking for V2X communications using SC-FDE schemes

    Get PDF
    Our aim with this paper is to present a solution suitable for vehicle-to-everything (V2X) communications, particularly, when employing single-carrier modulations combined with frequency-domain equalization (SC-FDE). In fact, we consider the V2X channel to be doubly-selective, where the variation of the channel in time is due to the presence of a Doppler term. Accordingly, the equalization procedure is dealt by a low-complexity iterative frequency-domain equalizer based on the iterative block decisionfeedback equalization (IB-DFE) while the tracking procedure is conducted employing an extended Kalman filter (EKF). The proposed system is very efficient since it allows a very low density of training symbols, even for fast-varying channels. Furthermore only two training symbols are required to initialize the tracking procedure. Thus, ensuring low latency together with reduced channel estimation overheads.publishe

    Advanced receiver structures for mobile MIMO multicarrier communication systems

    Get PDF
    Beyond third generation (3G) and fourth generation (4G) wireless communication systems are targeting far higher data rates, spectral efficiency and mobility requirements than existing 3G networks. By using multiple antennas at the transmitter and the receiver, multiple-input multiple-output (MIMO) technology allows improving both the spectral efficiency (bits/s/Hz), the coverage, and link reliability of the system. Multicarrier modulation such as orthogonal frequency division multiplexing (OFDM) is a powerful technique to handle impairments specific to the wireless radio channel. The combination of multicarrier modulation together with MIMO signaling provides a feasible physical layer technology for future beyond 3G and fourth generation communication systems. The theoretical benefits of MIMO and multicarrier modulation may not be fully achieved because the wireless transmission channels are time and frequency selective. Also, high data rates call for a large bandwidth and high carrier frequencies. As a result, an important Doppler spread is likely to be experienced, leading to variations of the channel over very short period of time. At the same time, transceiver front-end imperfections, mobility and rich scattering environments cause frequency synchronization errors. Unlike their single-carrier counterparts, multi-carrier transmissions are extremely sensitive to carrier frequency offsets (CFO). Therefore, reliable channel estimation and frequency synchronization are necessary to obtain the benefits of MIMO OFDM in mobile systems. These two topics are the main research problems in this thesis. An algorithm for the joint estimation and tracking of channel and CFO parameters in MIMO OFDM is developed in this thesis. A specific state-space model is introduced for MIMO OFDM systems impaired by multiple carrier frequency offsets under time-frequency selective fading. In MIMO systems, multiple frequency offsets are justified by mobility, rich scattering environment and large angle spread, as well as potentially separate radio frequency - intermediate frequency chains. An extended Kalman filter stage tracks channel and CFO parameters. Tracking takes place in time domain, which ensures reduced computational complexity, robustness to estimation errors as well as low estimation variance in comparison to frequency domain processing. The thesis also addresses the problem of blind carrier frequency synchronization in OFDM. Blind techniques exploit statistical or structural properties of the OFDM modulation. Two novel approaches are proposed for blind fine CFO estimation. The first one aims at restoring the orthogonality of the OFDM transmission by exploiting the properties of the received signal covariance matrix. The second approach is a subspace algorithm exploiting the correlation of the channel frequency response among the subcarriers. Both methods achieve reliable estimation of the CFO regardless of multipath fading. The subspace algorithm needs extremely small sample support, which is a key feature in the face of time-selective channels. Finally, the Cramér-Rao (CRB) bound is established for the problem in order to assess the large sample performance of the proposed algorithms.reviewe

    Development and verification of semi-blind receiver structures for broadband wireless communication systems

    Get PDF
    The increasingly high demands for high data rate wireless communication services require spectrum- and energy-efficient solutions. In this thesis, a number of energy-efficient semi-blind receiver structures are proposed to perform Doppler spread estimation, channel estimation and equalisation for broadband wireless orthogonal frequency division multiplexing (OFDM) systems. A real-time wireless communication testbed is developed to verify the proposed semi-blind receiver structures. In the first contribution, a semi-blind Doppler spread estimation and Kalman filtering based channel estimation approach is proposed for wireless OFDM systems. A short sequence of reference data is carefully designed and applied as pilot symbols for Doppler spread estimation and channel estimation initialisation of the Kalman filter. Then the estimates of inter-carrier interference (ICI) caused by Doppler spread are gathered into the equivalent channel model and compensated for through channel equalisation, which dramatically reduces the computational complexity. The simulation results show that the proposed approach outperforms the conventional pilot aided Doppler spread and channel estimation schemes. In the second contribution, a semi-blind Doppler spread estimation and independent component analysis (ICA) based equalisation scheme aided by non-redundant precoding is proposed for wireless multiple-input multiple-output (MIMO) OFDM systems. A number of reference data sequences are selected from a pool of orthogonal sequences for two purposes. First, the reference data sequences are superimposed in the source data sequences through non-redundant linear precoding to enable the Doppler spread estimation by minimising the sum cross-correlation between the compensated signals and the rest of the orthogonal sequences in the pool. Second, the same reference data sequences are applied to eliminate the phase and permutation ambiguity in the ICA equalised signals. Simulation results show that the proposed semi-blind MIMO OFDM system can achieve a bit error rate (BER) performance which is close to the ideal case with perfect channel state information (CSI). In the third contribution, a real-time wireless communication testbed is developed with a vector signal generator, a vector signal analyser and a pair of antennas, to verify the effectiveness of the proposed receiver structures over the air in different environments such as Reverberation chamber and office area. Measurement results show a good match with simulation results. Also, a pilot is employed for three purposes at a semi-blind receiver: time synchronisation, Doppler spread estimation and Kalman filtering initialisation, which is an extension of the work in the first contribution
    • …
    corecore