376 research outputs found

    A recursive paradigm to solve Boolean relations

    Get PDF
    A Boolean relation can specify some types of flexibility of a combinational circuit that cannot be expressed with don't cares. Several problems in logic synthesis, such as Boolean decomposition or multilevel minimization, can be modeled with Boolean relations. However, solving Boolean relations is a computationally expensive task. This paper presents a novel recursive algorithm for solving Boolean relations. The algorithm has several features: efficiency, wide exploration of solutions, and customizable cost function. The experimental results show the applicability of the method in logic minimization problems and tangible improvements with regard to previous heuristic approaches

    Fast Heuristic and Exact Algorithms for Two-Level Hazard-Free Logic Minimization

    Get PDF
    None of the available minimizers for 2-level hazard-free logic minimization can synthesize very large circuits. This limitation has forced researchers to resort to manual and automated circuit partitioning techniques. This paper introduces two new 2-level logic minimizers:ESPRESSO-HF, a heuristic method which is loosely based on ESPRESSO-II, and IMPYMIN, an exact method based on implicit data structures. Both minimizers can solve all currently available examples, which range up to 32 inputs and 33 outputs.These include examples that have never been solved before.For examples that can be solved by other minimizers our methods are several orders of magnitude faster. As by-products of these algorithms, we also present two additional results. First, we introduce a fast new algorithm to check if a hazard-free covering problem can feasibly be solved. Second, we introduce a novel formulation of the 2-level hazard-free logic minimization problem by capturing hazard-freedom constraints within a synchronous function by adding new variables

    Fast Heuristic and Exact Algorithms for Two-Level Hazard-Free Logic Minimization

    Get PDF
    None of the available minimizers for 2-level hazard-free logic minimization can synthesize very large circuits. This limitation has forced researchers to resort to manual and automated circuit partitioning techniques. This paper introduces two new 2-level logic minimizers:ESPRESSO-HF, a heuristic method which is loosely based on ESPRESSO-II, and IMPYMIN, an exact method based on implicit data structures. Both minimizers can solve all currently available examples, which range up to 32 inputs and 33 outputs.These include examples that have never been solved before.For examples that can be solved by other minimizers our methods are several orders of magnitude faster. As by-products of these algorithms, we also present two additional results. First, we introduce a fast new algorithm to check if a hazard-free covering problem can feasibly be solved. Second, we introduce a novel formulation of the 2-level hazard-free logic minimization problem by capturing hazard-freedom constraints within a synchronous function by adding new variables

    Logic Synthesis as an Efficient Means of Minimal Model Discovery from Multivariable Medical Datasets

    Get PDF
    In this paper we review the application of logic synthesis methods for uncovering minimal structures in observational/medical datasets. Traditionally used in digital circuit design, logic synthesis has taken major strides in the past few decades and forms the foundation of some of the most powerful concepts in computer science and data mining. Here we provide a review of current state of research in application of logic synthesis methods for data analysis and provide a demonstrative example for systematic application and reasoning based on these methods

    Advances in Functional Decomposition: Theory and Applications

    Get PDF
    Functional decomposition aims at finding efficient representations for Boolean functions. It is used in many applications, including multi-level logic synthesis, formal verification, and testing. This dissertation presents novel heuristic algorithms for functional decomposition. These algorithms take advantage of suitable representations of the Boolean functions in order to be efficient. The first two algorithms compute simple-disjoint and disjoint-support decompositions. They are based on representing the target function by a Reduced Ordered Binary Decision Diagram (BDD). Unlike other BDD-based algorithms, the presented ones can deal with larger target functions and produce more decompositions without requiring expensive manipulations of the representation, particularly BDD reordering. The third algorithm also finds disjoint-support decompositions, but it is based on a technique which integrates circuit graph analysis and BDD-based decomposition. The combination of the two approaches results in an algorithm which is more robust than a purely BDD-based one, and that improves both the quality of the results and the running time. The fourth algorithm uses circuit graph analysis to obtain non-disjoint decompositions. We show that the problem of computing non-disjoint decompositions can be reduced to the problem of computing multiple-vertex dominators. We also prove that multiple-vertex dominators can be found in polynomial time. This result is important because there is no known polynomial time algorithm for computing all non-disjoint decompositions of a Boolean function. The fifth algorithm provides an efficient means to decompose a function at the circuit graph level, by using information derived from a BDD representation. This is done without the expensive circuit re-synthesis normally associated with BDD-based decomposition approaches. Finally we present two publications that resulted from the many detours we have taken along the winding path of our research

    Selected Topics in Network Optimization: Aligning Binary Decision Diagrams for a Facility Location Problem and a Search Method for Dynamic Shortest Path Interdiction

    Get PDF
    This work deals with three different combinatorial optimization problems: minimizing the total size of a pair of binary decision diagrams (BDDs) under a certain structural property, a variant of the facility location problem, and a dynamic version of the Shortest-Path Interdiction (DSPI) problem. However, these problems all have the following core idea in common: They all stem from representing an optimization problem as a decision diagram. We begin from cases in which such a diagram representation of reasonable size might exist, but finding a small diagram is difficult to achieve. The first problem develops a heuristic for enforcing a structural property for a collection of BDDs, which allows them to be merged into a single one efficiently. In the second problem, we consider a specific combinatorial problem that allows for a natural representation by a pair of BDDs. We use the previous result and ideas developed earlier in the literature to reformulate this problem as a linear program over a single BDD. This approach enables us to obtain sensitivity information, while often enjoying runtimes comparable to a mixed integer program solved with a commercial solver, after we pay the computational overhead of building the diagram (e.g., when re-solving the problem using different costs, but the same graph topology). In the last part, we examine DSPI, for which building the full decision diagram is generally impractical. We formalize the concept of a game tree for the DSPI and design a heuristic based on the idea of building only selected parts of this exponentially-sized decision diagram (which is not binary any more). We use a Monte Carlo Tree Search framework to establish policies that are near optimal. To mitigate the size of the game tree, we leverage previously derived bounds for the DSPI and employ an alpha–beta pruning technique for minimax optimization. We highlight the practicality of these ideas in a series of numerical experiments
    corecore