41,250 research outputs found

    A similarity-based cooperative co-evolutionary algorithm for dynamic interval multi-objective optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic interval multi-objective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multi-objective cooperative co-evolutionary optimization based on the interval similarity is presented in this paper to handle DI-MOPs. In the framework, a strategy for decomposing decision variables is first proposed, through which all the decision variables are divided into two groups according to the interval similarity between each decision variable and interval parameters. Following that, two sub-populations are utilized to cooperatively optimize decision variables in the two groups. Furthermore, two response strategies, rgb0.00,0.00,0.00i.e., a strategy based on the change intensity and a random mutation strategy, are employed to rapidly track the changing Pareto front of the optimization problem. The proposed algorithm is applied to eight benchmark optimization instances rgb0.00,0.00,0.00as well as a multi-period portfolio selection problem and compared with five state-of-the-art evolutionary algorithms. The experimental results reveal that the proposed algorithm is very competitive on most optimization instances

    Hybridizing Non-dominated Sorting Algorithms: Divide-and-Conquer Meets Best Order Sort

    Full text link
    Many production-grade algorithms benefit from combining an asymptotically efficient algorithm for solving big problem instances, by splitting them into smaller ones, and an asymptotically inefficient algorithm with a very small implementation constant for solving small subproblems. A well-known example is stable sorting, where mergesort is often combined with insertion sort to achieve a constant but noticeable speed-up. We apply this idea to non-dominated sorting. Namely, we combine the divide-and-conquer algorithm, which has the currently best known asymptotic runtime of O(N(logN)M1)O(N (\log N)^{M - 1}), with the Best Order Sort algorithm, which has the runtime of O(N2M)O(N^2 M) but demonstrates the best practical performance out of quadratic algorithms. Empirical evaluation shows that the hybrid's running time is typically not worse than of both original algorithms, while for large numbers of points it outperforms them by at least 20%. For smaller numbers of objectives, the speedup can be as large as four times.Comment: A two-page abstract of this paper will appear in the proceedings companion of the 2017 Genetic and Evolutionary Computation Conference (GECCO 2017
    corecore