19,504 research outputs found

    Unsupervised Learning of Edges

    Full text link
    Data-driven approaches for edge detection have proven effective and achieve top results on modern benchmarks. However, all current data-driven edge detectors require manual supervision for training in the form of hand-labeled region segments or object boundaries. Specifically, human annotators mark semantically meaningful edges which are subsequently used for training. Is this form of strong, high-level supervision actually necessary to learn to accurately detect edges? In this work we present a simple yet effective approach for training edge detectors without human supervision. To this end we utilize motion, and more specifically, the only input to our method is noisy semi-dense matches between frames. We begin with only a rudimentary knowledge of edges (in the form of image gradients), and alternate between improving motion estimation and edge detection in turn. Using a large corpus of video data, we show that edge detectors trained using our unsupervised scheme approach the performance of the same methods trained with full supervision (within 3-5%). Finally, we show that when using a deep network for the edge detector, our approach provides a novel pre-training scheme for object detection.Comment: Camera ready version for CVPR 201

    Object segmentation in depth maps with one user click and a synthetically trained fully convolutional network

    Get PDF
    With more and more household objects built on planned obsolescence and consumed by a fast-growing population, hazardous waste recycling has become a critical challenge. Given the large variability of household waste, current recycling platforms mostly rely on human operators to analyze the scene, typically composed of many object instances piled up in bulk. Helping them by robotizing the unitary extraction is a key challenge to speed up this tedious process. Whereas supervised deep learning has proven very efficient for such object-level scene understanding, e.g., generic object detection and segmentation in everyday scenes, it however requires large sets of per-pixel labeled images, that are hardly available for numerous application contexts, including industrial robotics. We thus propose a step towards a practical interactive application for generating an object-oriented robotic grasp, requiring as inputs only one depth map of the scene and one user click on the next object to extract. More precisely, we address in this paper the middle issue of object seg-mentation in top views of piles of bulk objects given a pixel location, namely seed, provided interactively by a human operator. We propose a twofold framework for generating edge-driven instance segments. First, we repurpose a state-of-the-art fully convolutional object contour detector for seed-based instance segmentation by introducing the notion of edge-mask duality with a novel patch-free and contour-oriented loss function. Second, we train one model using only synthetic scenes, instead of manually labeled training data. Our experimental results show that considering edge-mask duality for training an encoder-decoder network, as we suggest, outperforms a state-of-the-art patch-based network in the present application context.Comment: This is a pre-print of an article published in Human Friendly Robotics, 10th International Workshop, Springer Proceedings in Advanced Robotics, vol 7. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-89327-3\_16, Springer Proceedings in Advanced Robotics, Siciliano Bruno, Khatib Oussama, In press, Human Friendly Robotics, 10th International Workshop,

    Shadow Optimization from Structured Deep Edge Detection

    Full text link
    Local structures of shadow boundaries as well as complex interactions of image regions remain largely unexploited by previous shadow detection approaches. In this paper, we present a novel learning-based framework for shadow region recovery from a single image. We exploit the local structures of shadow edges by using a structured CNN learning framework. We show that using the structured label information in the classification can improve the local consistency of the results and avoid spurious labelling. We further propose and formulate a shadow/bright measure to model the complex interactions among image regions. The shadow and bright measures of each patch are computed from the shadow edges detected in the image. Using the global interaction constraints on patches, we formulate a least-square optimization problem for shadow recovery that can be solved efficiently. Our shadow recovery method achieves state-of-the-art results on the major shadow benchmark databases collected under various conditions.Comment: 8 pages. CVPR 201

    Contour Detection from Deep Patch-level Boundary Prediction

    Full text link
    In this paper, we present a novel approach for contour detection with Convolutional Neural Networks. A multi-scale CNN learning framework is designed to automatically learn the most relevant features for contour patch detection. Our method uses patch-level measurements to create contour maps with overlapping patches. We show the proposed CNN is able to to detect large-scale contours in an image efficienly. We further propose a guided filtering method to refine the contour maps produced from large-scale contours. Experimental results on the major contour benchmark databases demonstrate the effectiveness of the proposed technique. We show our method can achieve good detection of both fine-scale and large-scale contours.Comment: IEEE International Conference on Signal and Image Processing 201
    • …
    corecore