7,135 research outputs found

    Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition

    Full text link
    This paper studies joint beamforming and power control in a coordinated multicell downlink system that serves multiple users per cell to maximize the minimum weighted signal-to-interference-plus-noise ratio. The optimal solution and distributed algorithm with geometrically fast convergence rate are derived by employing the nonlinear Perron-Frobenius theory and the multicell network duality. The iterative algorithm, though operating in a distributed manner, still requires instantaneous power update within the coordinated cluster through the backhaul. The backhaul information exchange and message passing may become prohibitive with increasing number of transmit antennas and increasing number of users. In order to derive asymptotically optimal solution, random matrix theory is leveraged to design a distributed algorithm that only requires statistical information. The advantage of our approach is that there is no instantaneous power update through backhaul. Moreover, by using nonlinear Perron-Frobenius theory and random matrix theory, an effective primal network and an effective dual network are proposed to characterize and interpret the asymptotic solution.Comment: Some typos in the version publised in the IEEE Transactions on Wireless Communications are correcte

    Rate analysis of inexact dual first order methods: Application to distributed MPC for network systems

    Full text link
    In this paper we propose and analyze two dual methods based on inexact gradient information and averaging that generate approximate primal solutions for smooth convex optimization problems. The complicating constraints are moved into the cost using the Lagrange multipliers. The dual problem is solved by inexact first order methods based on approximate gradients and we prove sublinear rate of convergence for these methods. In particular, we provide, for the first time, estimates on the primal feasibility violation and primal and dual suboptimality of the generated approximate primal and dual solutions. Moreover, we solve approximately the inner problems with a parallel coordinate descent algorithm and we show that it has linear convergence rate. In our analysis we rely on the Lipschitz property of the dual function and inexact dual gradients. Further, we apply these methods to distributed model predictive control for network systems. By tightening the complicating constraints we are also able to ensure the primal feasibility of the approximate solutions generated by the proposed algorithms. We obtain a distributed control strategy that has the following features: state and input constraints are satisfied, stability of the plant is guaranteed, whilst the number of iterations for the suboptimal solution can be precisely determined.Comment: 26 pages, 2 figure
    • …
    corecore