5,307 research outputs found

    Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees

    Full text link
    Let GG be an nn-node and mm-edge positively real-weighted undirected graph. For any given integer f1f \ge 1, we study the problem of designing a sparse \emph{f-edge-fault-tolerant} (ff-EFT) σ\sigma{\em -approximate single-source shortest-path tree} (σ\sigma-ASPT), namely a subgraph of GG having as few edges as possible and which, following the failure of a set FF of at most ff edges in GG, contains paths from a fixed source that are stretched at most by a factor of σ\sigma. To this respect, we provide an algorithm that efficiently computes an ff-EFT (2F+1)(2|F|+1)-ASPT of size O(fn)O(f n). Our structure improves on a previous related construction designed for \emph{unweighted} graphs, having the same size but guaranteeing a larger stretch factor of 3(f+1)3(f+1), plus an additive term of (f+1)logn(f+1) \log n. Then, we show how to convert our structure into an efficient ff-EFT \emph{single-source distance oracle} (SSDO), that can be built in O~(fm)\widetilde{O}(f m) time, has size O(fnlog2n)O(fn \log^2 n), and is able to report, after the failure of the edge set FF, in O(F2log2n)O(|F|^2 \log^2 n) time a (2F+1)(2|F|+1)-approximate distance from the source to any node, and a corresponding approximate path in the same amount of time plus the path's size. Such an oracle is obtained by handling another fundamental problem, namely that of updating a \emph{minimum spanning forest} (MSF) of GG after that a \emph{batch} of kk simultaneous edge modifications (i.e., edge insertions, deletions and weight changes) is performed. For this problem, we build in O(mlog3n)O(m \log^3 n) time a \emph{sensitivity} oracle of size O(mlog2n)O(m \log^2 n), that reports in O(k2log2n)O(k^2 \log^2 n) time the (at most 2k2k) edges either exiting from or entering into the MSF. [...]Comment: 16 pages, 4 figure

    Path-Fault-Tolerant Approximate Shortest-Path Trees

    Full text link
    Let G=(V,E)G=(V,E) be an nn-nodes non-negatively real-weighted undirected graph. In this paper we show how to enrich a {\em single-source shortest-path tree} (SPT) of GG with a \emph{sparse} set of \emph{auxiliary} edges selected from EE, in order to create a structure which tolerates effectively a \emph{path failure} in the SPT. This consists of a simultaneous fault of a set FF of at most ff adjacent edges along a shortest path emanating from the source, and it is recognized as one of the most frequent disruption in an SPT. We show that, for any integer parameter k1k \geq 1, it is possible to provide a very sparse (i.e., of size O(knf1+1/k)O(kn\cdot f^{1+1/k})) auxiliary structure that carefully approximates (i.e., within a stretch factor of (2k1)(2F+1)(2k-1)(2|F|+1)) the true shortest paths from the source during the lifetime of the failure. Moreover, we show that our construction can be further refined to get a stretch factor of 33 and a size of O(nlogn)O(n \log n) for the special case f=2f=2, and that it can be converted into a very efficient \emph{approximate-distance sensitivity oracle}, that allows to quickly (even in optimal time, if k=1k=1) reconstruct the shortest paths (w.r.t. our structure) from the source after a path failure, thus permitting to perform promptly the needed rerouting operations. Our structure compares favorably with previous known solutions, as we discuss in the paper, and moreover it is also very effective in practice, as we assess through a large set of experiments.Comment: 21 pages, 3 figures, SIROCCO 201

    Exact Distance Oracles for Planar Graphs with Failing Vertices

    Full text link
    We consider exact distance oracles for directed weighted planar graphs in the presence of failing vertices. Given a source vertex uu, a target vertex vv and a set XX of kk failed vertices, such an oracle returns the length of a shortest uu-to-vv path that avoids all vertices in XX. We propose oracles that can handle any number kk of failures. More specifically, for a directed weighted planar graph with nn vertices, any constant kk, and for any q[1,n]q \in [1,\sqrt n], we propose an oracle of size O~(nk+3/2q2k+1)\tilde{\mathcal{O}}(\frac{n^{k+3/2}}{q^{2k+1}}) that answers queries in O~(q)\tilde{\mathcal{O}}(q) time. In particular, we show an O~(n)\tilde{\mathcal{O}}(n)-size, O~(n)\tilde{\mathcal{O}}(\sqrt{n})-query-time oracle for any constant kk. This matches, up to polylogarithmic factors, the fastest failure-free distance oracles with nearly linear space. For single vertex failures (k=1k=1), our O~(n5/2q3)\tilde{\mathcal{O}}(\frac{n^{5/2}}{q^3})-size, O~(q)\tilde{\mathcal{O}}(q)-query-time oracle improves over the previously best known tradeoff of Baswana et al. [SODA 2012] by polynomial factors for q=Ω(nt)q = \Omega(n^t), t(1/4,1/2]t \in (1/4,1/2]. For multiple failures, no planarity exploiting results were previously known

    Sparse Fault-Tolerant BFS Trees

    Full text link
    This paper addresses the problem of designing a sparse {\em fault-tolerant} BFS tree, or {\em FT-BFS tree} for short, namely, a sparse subgraph TT of the given network GG such that subsequent to the failure of a single edge or vertex, the surviving part TT' of TT still contains a BFS spanning tree for (the surviving part of) GG. Our main results are as follows. We present an algorithm that for every nn-vertex graph GG and source node ss constructs a (single edge failure) FT-BFS tree rooted at ss with O(n \cdot \min\{\Depth(s), \sqrt{n}\}) edges, where \Depth(s) is the depth of the BFS tree rooted at ss. This result is complemented by a matching lower bound, showing that there exist nn-vertex graphs with a source node ss for which any edge (or vertex) FT-BFS tree rooted at ss has Ω(n3/2)\Omega(n^{3/2}) edges. We then consider {\em fault-tolerant multi-source BFS trees}, or {\em FT-MBFS trees} for short, aiming to provide (following a failure) a BFS tree rooted at each source sSs\in S for some subset of sources SVS\subseteq V. Again, tight bounds are provided, showing that there exists a poly-time algorithm that for every nn-vertex graph and source set SVS \subseteq V of size σ\sigma constructs a (single failure) FT-MBFS tree T(S)T^*(S) from each source siSs_i \in S, with O(σn3/2)O(\sqrt{\sigma} \cdot n^{3/2}) edges, and on the other hand there exist nn-vertex graphs with source sets SVS \subseteq V of cardinality σ\sigma, on which any FT-MBFS tree from SS has Ω(σn3/2)\Omega(\sqrt{\sigma}\cdot n^{3/2}) edges. Finally, we propose an O(logn)O(\log n) approximation algorithm for constructing FT-BFS and FT-MBFS structures. The latter is complemented by a hardness result stating that there exists no Ω(logn)\Omega(\log n) approximation algorithm for these problems under standard complexity assumptions

    Space-Efficient Fault-Tolerant Diameter Oracles

    Get PDF
    We design ff-edge fault-tolerant diameter oracles (ff-FDOs). We preprocess a given graph GG on nn vertices and mm edges, and a positive integer ff, to construct a data structure that, when queried with a set FF of Ff|F| \leq f edges, returns the diameter of GFG-F. For a single failure (f=1f=1) in an unweighted directed graph of diameter DD, there exists an approximate FDO by Henzinger et al. [ITCS 2017] with stretch (1+ε)(1+\varepsilon), constant query time, space O(m)O(m), and a combinatorial preprocessing time of O~(mn+n1.5Dm/ε)\widetilde{O}(mn + n^{1.5} \sqrt{Dm/\varepsilon}).We present an FDO for directed graphs with the same stretch, query time, and space. It has a preprocessing time of O~(mn+n2/ε)\widetilde{O}(mn + n^2/\varepsilon). The preprocessing time nearly matches a conditional lower bound for combinatorial algorithms, also by Henzinger et al. With fast matrix multiplication, we achieve a preprocessing time of O~(n2.5794+n2/ε)\widetilde{O}(n^{2.5794} + n^2/\varepsilon). We further prove an information-theoretic lower bound showing that any FDO with stretch better than 3/23/2 requires Ω(m)\Omega(m) bits of space. For multiple failures (f>1f>1) in undirected graphs with non-negative edge weights, we give an ff-FDO with stretch (f+2)(f+2), query time O(f2log2n)O(f^2\log^2{n}), O~(fn)\widetilde{O}(fn) space, and preprocessing time O~(fm)\widetilde{O}(fm). We complement this with a lower bound excluding any finite stretch in o(fn)o(fn) space. We show that for unweighted graphs with polylogarithmic diameter and up to f=o(logn/loglogn)f = o(\log n/ \log\log n) failures, one can swap approximation for query time and space. We present an exact combinatorial ff-FDO with preprocessing time mn1+o(1)mn^{1+o(1)}, query time no(1)n^{o(1)}, and space n2+o(1)n^{2+o(1)}. When using fast matrix multiplication instead, the preprocessing time can be improved to nω+o(1)n^{\omega+o(1)}, where ω<2.373\omega < 2.373 is the matrix multiplication exponent.Comment: Full version of a paper to appear at MFCS'21. Abstract shortened to meet ArXiv requirement

    Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees

    Get PDF
    Let G be an n-node and m-edge positively real-weighted undirected graph. For any given integer f >= 1, we study the problem of designing a sparse f-edge-fault-tolerant (f-EFT) sigma-approximate single-source shortest-path tree (sigma-ASPT), namely a subgraph of G having as few edges as possible and which, following the failure of a set F of at most f edges in G, contains paths from a fixed source that are stretched at most by a factor of sigma. To this respect, we provide an algorithm that efficiently computes an f-EFT (2|F|+1)-ASPT of size O(f n). Our structure improves on a previous related construction designed for unweighted graphs, having the same size but guaranteeing a larger stretch factor of 3(f+1), plus an additive term of (f+1)*log(n). Then, we show how to convert our structure into an efficient f-EFT single-source distance oracle (SSDO), that can be built in ~{O}(f m) time, has size O(fn *log^2(n)), and is able to report, after the failure of the edge set F, in O(|F|^2 * log^2(n)) time a (2|F|+1)-approximate distance from the source to any node, and a corresponding approximate path in the same amount of time plus the path\u27s size. Such an oracle is obtained by handling another fundamental problem, namely that of updating a minimum spanning forest (MSF) of G after that a batch of k simultaneous edge modifications (i.e., edge insertions, deletions and weight changes) is performed. For this problem, we build in O(m * log^3(n)) time a sensitivity oracle of size O(m * log^2(n)), that reports in O(k^2 * log^2(n)) time the (at most 2k) edges either exiting from or entering into the MSF. As a result of independent interest, it is worth noticing that our MSF oracle can be employed to handle arbitrary sequences of o(sqrt[4]{n}/log(n)) (non-simultaneous) updates with a worst-case time per update of o(sqrt{n}). Thus, for relatively short sequences of updates, our oracle should be preferred w.r.t. the best-known (in a worst-case sense) MSF fully-dynamic algorithm, requiring O(sqrt{n}) time per update

    Fault-Tolerant ST-Diameter Oracles

    Get PDF
    We study the problem of estimating the ST-diameter of a graph that is subject to a bounded number of edge failures. An f-edge fault-tolerant ST-diameter oracle (f-FDO-ST) is a data structure that preprocesses a given graph G, two sets of vertices S,T, and positive integer f. When queried with a set F of at most f edges, the oracle returns an estimate D? of the ST-diameter diam(G-F,S,T), the maximum distance between vertices in S and T in G-F. The oracle has stretch ? ? 1 if diam(G-F,S,T) ? D? ? ? diam(G-F,S,T). If S and T both contain all vertices, the data structure is called an f-edge fault-tolerant diameter oracle (f-FDO). An f-edge fault-tolerant distance sensitivity oracles (f-DSO) estimates the pairwise graph distances under up to f failures. We design new f-FDOs and f-FDO-STs by reducing their construction to that of all-pairs and single-source f-DSOs. We obtain several new tradeoffs between the size of the data structure, stretch guarantee, query and preprocessing times for diameter oracles by combining our black-box reductions with known results from the literature. We also provide an information-theoretic lower bound on the space requirement of approximate f-FDOs. We show that there exists a family of graphs for which any f-FDO with sensitivity f ? 2 and stretch less than 5/3 requires ?(n^{3/2}) bits of space, regardless of the query time
    corecore