564 research outputs found

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Output-Sensitive Rendering of Detailed Animated Characters for Crowd Simulation

    Get PDF
    High-quality, detailed animated characters are often represented as textured polygonal meshes. The problem with this technique is the high cost that involves rendering and animating each one of these characters. This problem has become a major limiting factor in crowd simulation. Since we want to render a huge number of characters in real-time, the purpose of this thesis is therefore to study the current existing approaches in crowd rendering to derive a novel approach. The main limitations we have found when using impostors are (1) the big amount of memory needed to store them, which also has to be sent to the graphics card, (2) the lack of visual quality in close-up views, and (3) some visibility problems. As we wanted to overcome these limitations, and improve performance results, the found conclusions lead us to present a new representation for 3D animated characters using relief mapping, thus supporting an output-sensitive rendering. The basic idea of our approach is to encode each character through a small collection of textured boxes storing color and depth values. At runtime, each box is animated according to the rigid transformation of its associated bone in the animated skeleton. A fragment shader is used to recover the original geometry using an adapted version of relief mapping. Unlike competing output-sensitive approaches, our compact representation is able to recover high-frequency surface details and reproduces view-motion parallax e ects. Furthermore, the proposed approach ensures correct visibility among di erent animated parts, and it does not require us to prede ne the animation sequences nor to select a subset of discrete views. Finally, a user study demonstrates that our approach allows for a large number of simulated agents with negligible visual artifacts

    Output-Sensitive Rendering of Detailed Animated Characters for Crowd Simulation

    Get PDF
    High-quality, detailed animated characters are often represented as textured polygonal meshes. The problem with this technique is the high cost that involves rendering and animating each one of these characters. This problem has become a major limiting factor in crowd simulation. Since we want to render a huge number of characters in real-time, the purpose of this thesis is therefore to study the current existing approaches in crowd rendering to derive a novel approach. The main limitations we have found when using impostors are (1) the big amount of memory needed to store them, which also has to be sent to the graphics card, (2) the lack of visual quality in close-up views, and (3) some visibility problems. As we wanted to overcome these limitations, and improve performance results, the found conclusions lead us to present a new representation for 3D animated characters using relief mapping, thus supporting an output-sensitive rendering. The basic idea of our approach is to encode each character through a small collection of textured boxes storing color and depth values. At runtime, each box is animated according to the rigid transformation of its associated bone in the animated skeleton. A fragment shader is used to recover the original geometry using an adapted version of relief mapping. Unlike competing output-sensitive approaches, our compact representation is able to recover high-frequency surface details and reproduces view-motion parallax e ects. Furthermore, the proposed approach ensures correct visibility among di erent animated parts, and it does not require us to prede ne the animation sequences nor to select a subset of discrete views. Finally, a user study demonstrates that our approach allows for a large number of simulated agents with negligible visual artifacts

    Virtual humans: thirty years of research, what next?

    Get PDF
    In this paper, we present research results and future challenges in creating realistic and believable Virtual Humans. To realize these modeling goals, real-time realistic representation is essential, but we also need interactive and perceptive Virtual Humans to populate the Virtual Worlds. Three levels of modeling should be considered to create these believable Virtual Humans: 1) realistic appearance modeling, 2) realistic, smooth and flexible motion modeling, and 3) realistic high-level behaviors modeling. At first, the issues of creating virtual humans with better skeleton and realistic deformable bodies are illustrated. To give a level of believable behavior, challenges are laid on generating on the fly flexible motion and complex behaviours of Virtual Humans inside their environments using a realistic perception of the environment. Interactivity and group behaviours are also important parameters to create believable Virtual Humans which have challenges in creating believable relationship between real and virtual humans based on emotion and personality, and simulating realistic and believable behaviors of groups and crowds. Finally, issues in generating realistic virtual clothed and haired people are presente

    Multilinear motion synthesis with level-of-detail controls

    Get PDF
    Interactive animation systems often use a level-of-detail(LOD) control to reduce the computational cost by eliminatingunperceivable details of the scene. Most methodsemploy a multiresolutional representation of animationand geometrical data, and adaptively change the accuracylevel according to the importance of each character.Multilinear analysis provides the efficient representation ofmultidimensional and multimodal data, including humanmotion data, based on statistical data correlations. Thispaper proposes a LOD control method of motion synthesiswith a multilinear model. Our method first extracts asmall number of principal components of motion samplesby analyzing three-mode correlations among joints, time,and samples using high-order singular value decomposition.A new motion is synthesized by interpolatingthe reduced components using geostatistics, where theprediction accuracy of the resulting motion is controlledby adaptively decreasing the data dimensionality. Weintroduce a hybrid algorithm to optimize the reductionsize and computational time according to the distancefrom the camera while maintaining visual quality. Ourmethod provides a practical tool for creating an interactiveanimation of many characters while ensuring accurate andflexible controls at a modest level of computational cost

    Scalable Real-Time Rendering for Extremely Complex 3D Environments Using Multiple GPUs

    Get PDF
    In 3D visualization, real-time rendering of high-quality meshes in complex 3D environments is still one of the major challenges in computer graphics. New data acquisition techniques like 3D modeling and scanning have drastically increased the requirement for more complex models and the demand for higher display resolutions in recent years. Most of the existing acceleration techniques using a single GPU for rendering suffer from the limited GPU memory budget, the time-consuming sequential executions, and the finite display resolution. Recently, people have started building commodity workstations with multiple GPUs and multiple displays. As a result, more GPU memory is available across a distributed cluster of GPUs, more computational power is provided throughout the combination of multiple GPUs, and a higher display resolution can be achieved by connecting each GPU to a display monitor (resulting in a tiled large display configuration). However, using a multi-GPU workstation may not always give the desired rendering performance due to the imbalanced rendering workloads among GPUs and overheads caused by inter-GPU communication. In this dissertation, I contribute a multi-GPU multi-display parallel rendering approach for complex 3D environments. The approach has the capability to support a high-performance and high-quality rendering of static and dynamic 3D environments. A novel parallel load balancing algorithm is developed based on a screen partitioning strategy to dynamically balance the number of vertices and triangles rendered by each GPU. The overhead of inter-GPU communication is minimized by transferring only a small amount of image pixels rather than chunks of 3D primitives with a novel frame exchanging algorithm. The state-of-the-art parallel mesh simplification and GPU out-of-core techniques are integrated into the multi-GPU multi-display system to accelerate the rendering process

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    corecore