3,826 research outputs found

    Fast directional spatially localized spherical harmonic transform

    Get PDF
    We propose a transform for signals defined on the sphere that reveals their localized directional content in the spatio-spectral domain when used in conjunction with an asymmetric window function. We call this transform the directional spatially localized spherical harmonic transform (directional SLSHT) which extends the SLSHT from the literature whose usefulness is limited to symmetric windows. We present an inversion relation to synthesize the original signal from its directional-SLSHT distribution for an arbitrary window function. As an example of an asymmetric window, the most concentrated band-limited eigenfunction in an elliptical region on the sphere is proposed for directional spatio-spectral analysis and its effectiveness is illustrated on the synthetic and Mars topographic data-sets. Finally, since such typical data-sets on the sphere are of considerable size and the directional SLSHT is intrinsically computationally demanding depending on the band-limits of the signal and window, a fast algorithm for the efficient computation of the transform is developed. The floating point precision numerical accuracy of the fast algorithm is demonstrated and a full numerical complexity analysis is presented.Comment: 12 pages, 5 figure

    On the computation of directional scale-discretized wavelet transforms on the sphere

    Get PDF
    We review scale-discretized wavelets on the sphere, which are directional and allow one to probe oriented structure in data defined on the sphere. Furthermore, scale-discretized wavelets allow in practice the exact synthesis of a signal from its wavelet coefficients. We present exact and efficient algorithms to compute the scale-discretized wavelet transform of band-limited signals on the sphere. These algorithms are implemented in the publicly available S2DW code. We release a new version of S2DW that is parallelized and contains additional code optimizations. Note that scale-discretized wavelets can be viewed as a directional generalization of needlets. Finally, we outline future improvements to the algorithms presented, which can be achieved by exploiting a new sampling theorem on the sphere developed recently by some of the authors.Comment: 13 pages, 3 figures, Proceedings of Wavelets and Sparsity XV, SPIE Optics and Photonics 2013, Code is publicly available at http://www.s2dw.org

    Efficient analysis and representation of geophysical processes using localized spherical basis functions

    Full text link
    While many geological and geophysical processes such as the melting of icecaps, the magnetic expression of bodies emplaced in the Earth's crust, or the surface displacement remaining after large earthquakes are spatially localized, many of these naturally admit spectral representations, or they may need to be extracted from data collected globally, e.g. by satellites that circumnavigate the Earth. Wavelets are often used to study such nonstationary processes. On the sphere, however, many of the known constructions are somewhat limited. And in particular, the notion of `dilation' is hard to reconcile with the concept of a geological region with fixed boundaries being responsible for generating the signals to be analyzed. Here, we build on our previous work on localized spherical analysis using an approach that is firmly rooted in spherical harmonics. We construct, by quadratic optimization, a set of bandlimited functions that have the majority of their energy concentrated in an arbitrary subdomain of the unit sphere. The `spherical Slepian basis' that results provides a convenient way for the analysis and representation of geophysical signals, as we show by example. We highlight the connections to sparsity by showing that many geophysical processes are sparse in the Slepian basis.Comment: To appear in the Proceedings of the SPIE, as part of the Wavelets XIII conference in San Diego, August 200

    Scale-discretised ridgelet transform on the sphere

    Get PDF
    We revisit the spherical Radon transform, also called the Funk-Radon transform, viewing it as an axisymmetric convolution on the sphere. Viewing the spherical Radon transform in this manner leads to a straightforward derivation of its spherical harmonic representation, from which we show the spherical Radon transform can be inverted exactly for signals exhibiting antipodal symmetry. We then construct a spherical ridgelet transform by composing the spherical Radon and scale-discretised wavelet transforms on the sphere. The resulting spherical ridgelet transform also admits exact inversion for antipodal signals. The restriction to antipodal signals is expected since the spherical Radon and ridgelet transforms themselves result in signals that exhibit antipodal symmetry. Our ridgelet transform is defined natively on the sphere, probes signal content globally along great circles, does not exhibit blocking artefacts, supports spin signals and exhibits an exact and explicit inverse transform. No alternative ridgelet construction on the sphere satisfies all of these properties. Our implementation of the spherical Radon and ridgelet transforms is made publicly available. Finally, we illustrate the effectiveness of spherical ridgelets for diffusion magnetic resonance imaging of white matter fibers in the brain.Comment: 5 pages, 4 figures, matches version accepted by EUSIPCO, code available at http://www.s2let.or

    Localisation of directional scale-discretised wavelets on the sphere

    Get PDF
    Scale-discretised wavelets yield a directional wavelet framework on the sphere where a signal can be probed not only in scale and position but also in orientation. Furthermore, a signal can be synthesised from its wavelet coefficients exactly, in theory and practice (to machine precision). Scale-discretised wavelets are closely related to spherical needlets (both were developed independently at about the same time) but relax the axisymmetric property of needlets so that directional signal content can be probed. Needlets have been shown to satisfy important quasi-exponential localisation and asymptotic uncorrelation properties. We show that these properties also hold for directional scale-discretised wavelets on the sphere and derive similar localisation and uncorrelation bounds in both the scalar and spin settings. Scale-discretised wavelets can thus be considered as directional needlets.Comment: 28 pages, 8 figures, minor changes to match version accepted for publication by ACH

    Slepian Wavelets for the Analysis of Incomplete Data on Manifolds

    Get PDF
    Many fields in science and engineering measure data that inherently live on non-Euclidean geometries, such as the sphere. Techniques developed in the Euclidean setting must be extended to other geometries. Due to recent interest in geometric deep learning, analogues of Euclidean techniques must also handle general manifolds or graphs. Often, data are only observed over partial regions of manifolds, and thus standard whole-manifold techniques may not yield accurate predictions. In this thesis, a new wavelet basis is designed for datasets like these. Although many definitions of spherical convolutions exist, none fully emulate the Euclidean definition. A novel spherical convolution is developed, designed to tackle the shortcomings of existing methods. The so-called sifting convolution exploits the sifting property of the Dirac delta and follows by the inner product of a function with the translated version of another. This translation operator is analogous to the Euclidean translation in harmonic space and exhibits some useful properties. In particular, the sifting convolution supports directional kernels; has an output that remains on the sphere; and is efficient to compute. The convolution is entirely generic and thus may be used with any set of basis functions. An application of the sifting convolution with a topographic map of the Earth demonstrates that it supports directional kernels to perform anisotropic filtering. Slepian wavelets are built upon the eigenfunctions of the Slepian concentration problem of the manifold - a set of bandlimited functions which are maximally concentrated within a given region. Wavelets are constructed through a tiling of the Slepian harmonic line by leveraging the existing scale-discretised framework. A straightforward denoising formalism demonstrates a boost in signal-to-noise for both a spherical and general manifold example. Whilst these wavelets were inspired by spherical datasets, like in cosmology, the wavelet construction may be utilised for manifold or graph data

    Spatio-spectral analysis on the unit sphere

    No full text
    This thesis is focussed on the development of new signal processing techniques to analyse signals defined on the sphere. Analysis and processing of signals defined on the sphere find applications in various fields of science and engineering, such as cosmology, geophysics and medical imaging. The objective to develop new signal processing methods is served by formulating, extending and tailoring existing Euclidean domain signal processing theories in ways that they become suitable for analysis of signals defined on the sphere. The first part of this thesis develops a new type of convolution between two signals on the sphere. This is the first type of convolution on the sphere which is commutative. Two other advantages, in comparison with existing definitions in the literature, are that the new convolution admits anisotropic filters and signals and the domain of the output remains on the sphere. The spectral analysis of the convolution is provided and a fast algorithm for efficient computation of convolution output is developed. The second part of the thesis is focused on the development of signal processing techniques to analyse signals on the sphere in joint spatio-spectral~(spatial-spectral) domain. A transform analogous to short-time Fourier transform(STFT) in time-frequency analysis is formulated for signals defined on the sphere, in order to devise a spatio-spectral representation of a signal. The proposed transform is referred as the spatially localized spherical harmonic transform~(SLSHT) and is defined as windowed spherical harmonic transform, resulting in the SLSHT distribution. The properties of the SLSHT distribution and its analysis in the spherical harmonic domain are also provided. Furthermore, examples are provided to demonstrate the capability of SLSHT to reveal spatially localized spectral contents in a signal that were not obtainable from traditional spherical harmonics analysis. With the consideration that data-sets on the sphere can be of considerable size and the SLSHT is intrinsically computationally demanding depending on the band-limits of the signal and window, a fast algorithm for the efficient computation of the transform is developed. The floating point precision numerical accuracy of the fast algorithm is demonstrated and a full numerical complexity analysis is presented. A general framework for spatially-varying spectral filtering of signals defined on the unit sphere is also developed, as an analogy to joint time-frequency filtering. For spatio-spectral filtering, the spherical signals are first mapped from the spatial domain into a joint spatio-spectral domain using SLSHT, where a spatio-spectral signal transformation or modification is introduced. Next, a suitable scheme to transform the modified signal from the spatio-spectral domain back to an admissible signal in the spatial domain using the least squares approach is proposed. It is shown that the overall action of the SLSHT and spatio-spectral signal modification can be described through a single transformation matrix, which is useful in practice. Finally, two specific and useful instances of spatially-varying spectral filtering are presented, defined through multiplicative and convolutive modification of the SLSHT distribution. The proposed framework enables filtering or modification in the spatio-spectral domain which cannot be carried out in either the spatial or spectral domain
    • …
    corecore