458 research outputs found

    Differential space time modulation and demodulation for time varying multiple input multiple output channels

    Get PDF
    Over the last decade there has been considerable interest in wireless communication using multiple transmit and receive antennas. Several literatures exists that show that these multiple link support very high data rates with low error probabilities when the channel state information is available at the receiver. However when multiple antennas are employed or when the mobile environments change rapidly, it is not always possible to have apriori knowledge of the channel state matrices which calls for Differential Space-Time modulation techniques. Differential modulation is used in conjunction with Unitary Space-Time codes to evaluate their performance over time varying channels. Jakes model for frequency flat fading processes in mobile radio systems is incorporated with the differential modulation scheme to model a time-varying space-time Rayleigh fading multiple input multiple output (MIMO) radio channel. Parametric unitary codes that are known to have the largest possible diversity product for a 16-signal constellation and a 4-signal constellation with both optimal diversity sum and diversity product is used to evaluate the Block Error Rates for 2 and 5 receiver antennas that are moving at different velocities. A fast differential demodulation for Alamouti codes is derived based on prior work by Liang and Xia and is tested using our simulations. MATLAB R2006b V 7.1 is used to simulate the performance of M=2, N=2 and M=2 N=5 antennas over a time varying channel for velocities of 0, 50, 75, 100 and 125 kmph. We also show that the fast demodulation algorithm is almost twice as fast and also perform within 1dB of existing differential demodulation schemes

    Maximum likelihood detection for differential unitary space-time modulation with carrier frequency offset

    Get PDF
    Can conventional differential unitary space time modulation (DUSTM) be applied when there is an unknown carrier frequency offset (CFO)? This paper answers this question affirmatively and derives the necessary maximum likelihood (ML) detection rule. The asymptotic performance of the proposed ML rule is analyzed, leading to a code design criterion for DUSTM by using the modified diversity product. The resulting proposed decision rule is a new differential modulation scheme in both the temporal and spatial domains. Two sub-optimal multiple-symbol decision rules with improved performance are also proposed. For the efficient implementation of these, we derive a modified bound intersection detector (BID), a generalization of the previously derived optimal BID for the conventional DUSTM. The simulation results show that the proposed differential modulation scheme is more robust against CFO drifting than the existing double temporal differential modulation

    A Novel Multiple-Output DUSTF Coding on High Mobility MIMO-Wireless Communication Systems

    Get PDF
    In the future, wireless access system will operate in high data rate transmission and high mobility environment, to support private and public access. For such an environment, it is necessary to develop a system that has a higher spectrum efficiency and is able to mitigate selective fading problems. A novel multiple-output differential unitary space-time frequency (DUSTF) coding scheme is proposed to overcome those problems. The implementation of this inner coding scheme is unified with MIMO system, so that the scheme has a good spectrum efficiency. The differential space-time modulation in this proposed scheme is intended to operate in a non-coherent channel transmission scheme and to guarantee the system performance. In order to combat the selective fading problems, the multi-carrier space frequency scheme is utilized in the proposed scheme. In general, simulation result shows that the MIMO wireless system with the multiple-output DUSTF coding scheme in a non-coherent channel transmission scheme provides a good system performance. The proposed scheme can outperforms other previously published inner coding scheme for high mobility and high SNR. The system also achieves a good channel capacity

    Performance evaluation of communication systems with transmit diversity

    Get PDF
    Transmit diversity is a key technique to combat fading with multiple transmit antennae for next-generation wireless communication systems. Space-time block code (STBC) is a main component of this technique. This dissertation consists of four parts: the first three discuss performance evaluation of STBCs in various circumstances, the fourth outlines a novel differential scheme with full transmit diversity. In the first part, closed-form expressions for the bit error rate (BER) are derived for STBC based on Alamouti\u27s scheme and utilizing M-ary phase shift keying (MPSK) modulation. The analysis is carried out for a slow, flat Rayleigh fading channel with coherent detection and with non-coherent differential encoding/decoding. The BER expression for coherent detection is exact. But for differential detection it is an approximation appropriate for a high signal-to-noise ratio. Numerical results are provided for analysis and simulations for BPSK and QPSK modulations. A signal-to-noise ratio loss of approximately 3 dB always occurs with conventional differential detection for STBC compared to coherent detection. In the second part of this dissertation, a multiple-symbol differential detection (MSDD) technique is proposed for MPSK STBCs, which greatly reduces this performance loss by extending the observation interval for decoding. The technique uses maximum likelihood block sequence detection instead of traditional block-by-block detection and is carried out on the slow, flat Rayleigh fading channel. A generalized decision metric for an observation interval of N blocks is derived. It is shown that for a moderate number of blocks, MSDD provides more than 1.0 dB performance improvement corresponding to conventional differential detection. In addition, a closed-form pairwise error probability for differential BPSI( STBC is derived for an observation interval of N blocks, and an approximate BER is obtained to evaluate the performance. In the third part, the BER performance of STBC over a spatio-temporal correlated channel with coherent and noncoherent detection is illustrated, where a general space-time correlation model is utilized. The simulation results demonstrate that spatial correlation negatively effects the performance of the STBC scheme with differential detection but temporal correlation positively impacts it. However, with coherent detection, spatial correlation still has negative effect on the performance but temporal correlation has no impact on it. In the final part of this dissertation, a differential detection scheme for DS/CDMA MIMO link is presented. The transmission provides for full transmit and receive diversity gain using a simple detection scheme, which is a natural extension of differential detection combined with an orthogonal transmit diversity (OTD) approach. A capacity analysis for this scheme is illustrated

    Successive-relaying-aided decode-and-forward coherent versus noncoherent cooperative multicarrier space–time shift keying

    No full text
    Abstract—Successive-relaying-aided (SR) cooperative multi-carrier (MC) space–time shift keying (STSK) is proposed for frequency-selective channels. We invoke SR to mitigate the typical 50% throughput loss of conventional half-duplex relaying schemes and MC code-division multiple access (MC-CDMA) to circumvent the dispersive effects of wireless channels and to reduce the SR-induced interference. The distributed relay terminals form two virtual antenna arrays (VAAs), and the source node (SN) successively transmits frequency-domain (FD) spread signals to one of the VAAs, in addition to directly transmitting to the destination node (DN). The constituent relay nodes (RNs) of each VAA activate cyclic-redundancy-checking-based (CRC) selective decode-and-forward (DF) relaying. The DN can jointly detect the signals received via the SN-to-DN and VAA-to-DN links using a low-complexity single-stream-based joint maximum-likelihood (ML) detector. We also propose a differentially encoded cooperative MC-CDMA STSK scheme to facilitate communications over hostile dispersive channels without requiring channel estimation (CE). Dispensing with CE is important since the relays cannot be expected to altruistically estimate the SN-to-RN links for simply supporting the source. Furthermore, we propose soft-decision-aided serially concatenated recursive systematic convolutional (RSC) and unity-rate-coded (URC) cooperative MC STSK and investigate its performance in both coherent and noncoherent scenarios

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective
    corecore