143,553 research outputs found

    Fast Deterministic Selection

    Get PDF
    The Median of Medians (also known as BFPRT) algorithm, although a landmark theoretical achievement, is seldom used in practice because it and its variants are slower than simple approaches based on sampling. The main contribution of this paper is a fast linear-time deterministic selection algorithm QuickselectAdaptive based on a refined definition of MedianOfMedians. The algorithm's performance brings deterministic selection---along with its desirable properties of reproducible runs, predictable run times, and immunity to pathological inputs---in the range of practicality. We demonstrate results on independent and identically distributed random inputs and on normally-distributed inputs. Measurements show that QuickselectAdaptive is faster than state-of-the-art baselines.Comment: Pre-publication draf

    Quasi-Species and Aggregate Dynamics

    Full text link
    At an early stage in pre-biotic evolution, groups of replicating molecules must coordinate their reproduction to form aggregated units of selection. Mechanisms that enable this to occur are currently not well understood. In this paper we introduce a deterministic model of primitive replicating aggregates, proto-organisms, that host populations of replicating information carrying molecules. Some of the molecules promote the reproduction of the proto-organism at the cost of their individual replication rate. A situation resembling that of group selection arises. We derive and analytically solve a partial differential equation that describes the system. We find that the relative prevalence of fast and slow replicators is determined by the relative strength of selection at the aggregate level to the selection strength at the molecular level. The analysis is concluded by a preliminary treatment of finite population size effects.Comment: 6 page

    Improved Fast Neutron Spectroscopy via Detector Segmentation

    Full text link
    Organic scintillators are widely used for fast neutron detection and spectroscopy. Several effects complicate the interpretation of results from detectors based upon these materials. First, fast neutrons will often leave a detector before depositing all of their energy within it. Second, fast neutrons will typically scatter several times within a detector, and there is a non-proportional relationship between the energy of, and the scintillation light produced by, each individual scatter; therefore, there is not a deterministic relationship between the scintillation light observed and the neutron energy deposited. Here we demonstrate a hardware technique for reducing both of these effects. Use of a segmented detector allows for the event-by-event correction of the light yield non-proportionality and for the preferential selection of events with near-complete energy deposition, since these will typically have high segment multiplicities.Comment: Accepted for publication in Nuclear Instruments and Methods in Physics Research Section

    Scaling limits of a model for selection at two scales

    Full text link
    The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval [0,1][0,1] with dependence on a single parameter, λ\lambda. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on λ\lambda and the behavior of the initial data around 11. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.Comment: 23 pages, 1 figur
    • …
    corecore