153 research outputs found

    Deterministic 1-k routing on meshes with applications to worm-hole routing

    Get PDF
    In 11-kk routing each of the n2n^2 processing units of an n×nn \times n mesh connected computer initially holds 11 packet which must be routed such that any processor is the destination of at most kk packets. This problem reflects practical desire for routing better than the popular routing of permutations. 11-kk routing also has implications for hot-potato worm-hole routing, which is of great importance for real world systems. We present a near-optimal deterministic algorithm running in \sqrt{k} \cdot n / 2 + \go{n} steps. We give a second algorithm with slightly worse routing time but working queue size three. Applying this algorithm considerably reduces the routing time of hot-potato worm-hole routing. Non-trivial extensions are given to the general ll-kk routing problem and for routing on higher dimensional meshes. Finally we show that kk-kk routing can be performed in \go{k \cdot n} steps with working queue size four. Hereby the hot-potato worm-hole routing problem can be solved in \go{k^{3/2} \cdot n} steps

    Progress Report : 1991 - 1994

    Get PDF

    On Dynamic Monitoring Methods for Networks-on-Chip

    Get PDF
    Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of processing cores integrated in a single chip. An emerging challenge is the implementation of reliable and efficient interconnection between these cores as well as other components in the systems. Network-on-Chip is an interconnection approach which is intended to solve the performance bottleneck caused by traditional, poorly scalable communication structures such as buses. However, a large on-chip network involves issues related to congestion problems and system control, for instance. Additionally, faults can cause problems in multiprocessor systems. These faults can be transient faults, permanent manufacturing faults, or they can appear due to aging. To solve the emerging traffic management, controllability issues and to maintain system operation regardless of faults a monitoring system is needed. The monitoring system should be dynamically applicable to various purposes and it should fully cover the system under observation. In a large multiprocessor the distances between components can be relatively long. Therefore, the system should be designed so that the amount of energy-inefficient long-distance communication is minimized. This thesis presents a dynamically clustered distributed monitoring structure. The monitoring is distributed so that no centralized control is required for basic tasks such as traffic management and task mapping. To enable extensive analysis of different Network-on-Chip architectures, an in-house SystemC based simulation environment was implemented. It allows transaction level analysis without time consuming circuit level implementations during early design phases of novel architectures and features. The presented analysis shows that the dynamically clustered monitoring structure can be efficiently utilized for traffic management in faulty and congested Network-on-Chip-based multiprocessor systems. The monitoring structure can be also successfully applied for task mapping purposes. Furthermore, the analysis shows that the presented in-house simulation environment is flexible and practical tool for extensive Network-on-Chip architecture analysis.Siirretty Doriast

    Optimal Permutation Routing for Low-dimensional Hypercubes

    Get PDF
    We consider the offline problem of routing a permutation of tokens on the nodes of a d-dimensional hypercube, under a queueless MIMD communication model (under the constraints that each hypercube edge may only communicate one token per communication step, and each node may only be occupied by a single token between communication steps). For a d-dimensional hypercube, it is easy to see that d communication steps are necessary. We develop a theory of “separability ” which enables an analytical proof that d steps suffice for the case d = 3, and facilitates an experimental verification that d steps suffice for d = 4. This result improves the upper bound for the number of communication steps required to route an arbitrary permutation on arbitrarily large hypercubes to 2d − 4. We also find an interesting side-result, that the number of possible communication steps in a d-dimensional hypercube is the same as the number of perfect matchings in a (d + 1)-dimensional hypercube, a combinatorial quantity for which there is no closed-form expression. Finally we present some experimental observations which may lead to a proof of a more general result for arbitrarily large dimension d. 2

    On Fault Tolerance Methods for Networks-on-Chip

    Get PDF
    Technology scaling has proceeded into dimensions in which the reliability of manufactured devices is becoming endangered. The reliability decrease is a consequence of physical limitations, relative increase of variations, and decreasing noise margins, among others. A promising solution for bringing the reliability of circuits back to a desired level is the use of design methods which introduce tolerance against possible faults in an integrated circuit. This thesis studies and presents fault tolerance methods for network-onchip (NoC) which is a design paradigm targeted for very large systems-onchip. In a NoC resources, such as processors and memories, are connected to a communication network; comparable to the Internet. Fault tolerance in such a system can be achieved at many abstraction levels. The thesis studies the origin of faults in modern technologies and explains the classification to transient, intermittent and permanent faults. A survey of fault tolerance methods is presented to demonstrate the diversity of available methods. Networks-on-chip are approached by exploring their main design choices: the selection of a topology, routing protocol, and flow control method. Fault tolerance methods for NoCs are studied at different layers of the OSI reference model. The data link layer provides a reliable communication link over a physical channel. Error control coding is an efficient fault tolerance method especially against transient faults at this abstraction level. Error control coding methods suitable for on-chip communication are studied and their implementations presented. Error control coding loses its effectiveness in the presence of intermittent and permanent faults. Therefore, other solutions against them are presented. The introduction of spare wires and split transmissions are shown to provide good tolerance against intermittent and permanent errors and their combination to error control coding is illustrated. At the network layer positioned above the data link layer, fault tolerance can be achieved with the design of fault tolerant network topologies and routing algorithms. Both of these approaches are presented in the thesis together with realizations in the both categories. The thesis concludes that an optimal fault tolerance solution contains carefully co-designed elements from different abstraction levelsSiirretty Doriast

    Design and analysis of a 3-dimensional cluster multicomputer architecture using optical interconnection for petaFLOP computing

    Get PDF
    In this dissertation, the design and analyses of an extremely scalable distributed multicomputer architecture, using optical interconnects, that has the potential to deliver in the order of petaFLOP performance is presented in detail. The design takes advantage of optical technologies, harnessing the features inherent in optics, to produce a 3D stack that implements efficiently a large, fully connected system of nodes forming a true 3D architecture. To adopt optics in large-scale multiprocessor cluster systems, efficient routing and scheduling techniques are needed. To this end, novel self-routing strategies for all-optical packet switched networks and on-line scheduling methods that can result in collision free communication and achieve real time operation in high-speed multiprocessor systems are proposed. The system is designed to allow failed/faulty nodes to stay in place without appreciable performance degradation. The approach is to develop a dynamic communication environment that will be able to effectively adapt and evolve with a high density of missing units or nodes. A joint CPU/bandwidth controller that maximizes the resource allocation in this dynamic computing environment is introduced with an objective to optimize the distributed cluster architecture, preventing performance/system degradation in the presence of failed/faulty nodes. A thorough analysis, feasibility study and description of the characteristics of a 3-Dimensional multicomputer system capable of achieving 100 teraFLOP performance is discussed in detail. Included in this dissertation is throughput analysis of the routing schemes, using methods from discrete-time queuing systems and computer simulation results for the different proposed algorithms. A prototype of the 3D architecture proposed is built and a test bed developed to obtain experimental results to further prove the feasibility of the design, validate initial assumptions, algorithms, simulations and the optimized distributed resource allocation scheme. Finally, as a prelude to further research, an efficient data routing strategy for highly scalable distributed mobile multiprocessor networks is introduced
    corecore