705 research outputs found

    Deep Burst Denoising

    Full text link
    Noise is an inherent issue of low-light image capture, one which is exacerbated on mobile devices due to their narrow apertures and small sensors. One strategy for mitigating noise in a low-light situation is to increase the shutter time of the camera, thus allowing each photosite to integrate more light and decrease noise variance. However, there are two downsides of long exposures: (a) bright regions can exceed the sensor range, and (b) camera and scene motion will result in blurred images. Another way of gathering more light is to capture multiple short (thus noisy) frames in a "burst" and intelligently integrate the content, thus avoiding the above downsides. In this paper, we use the burst-capture strategy and implement the intelligent integration via a recurrent fully convolutional deep neural net (CNN). We build our novel, multiframe architecture to be a simple addition to any single frame denoising model, and design to handle an arbitrary number of noisy input frames. We show that it achieves state of the art denoising results on our burst dataset, improving on the best published multi-frame techniques, such as VBM4D and FlexISP. Finally, we explore other applications of image enhancement by integrating content from multiple frames and demonstrate that our DNN architecture generalizes well to image super-resolution

    The Application of Deep Learning for Classification of Alzheimer's Disease Stages by Magnetic Resonance Imaging Data

    Get PDF
    Detecting Alzheimer’s disease (AD) in its early stages is essential for effective management, and screening for Mild Cognitive Impairment (MCI) is common practice. Among many deep learning techniques applied to assess brain structural changes, Magnetic Resonance Imaging (MRI) and Convolutional Neural Networks (CNN) have grabbed research attention because of their excellent efficiency in automated feature learning of a variety of multilayer perceptron. In this study, various CNNs are trained to predict AD on three different views of MRI images, including Sagittal, Transverse, and Coronal views. This research use T1-Weighted MRI data of 3 years composed of 2182 NIFTI files. Each NIFTI file presents a single patient's Sagittal, Transverse, and Coronal views. T1-Weighted MRI images from the ADNI database are first preprocessed to achieve better representation. After MRI preprocessing, large slice numbers require a substantial computational cost during CNN training. To reduce the slice numbers for each view, this research proposes an intelligent probabilistic approach to select slice numbers such that the total computational cost per MRI is minimized. With hyperparameter tuning, batch normalization, and intelligent slice selection and cropping, an accuracy of 90.05% achieve with the Transverse, 82.4% with Sagittal, and 78.5% with Coronal view, respectively. Moreover, the views are stacked together and an accuracy of 92.21% is achived for the combined views. In addition, results are compared with other studies to show the performance of the proposed approach for AD detection

    SpaceNet: Make Free Space For Continual Learning

    Get PDF
    The continual learning (CL) paradigm aims to enable neural networks to learn tasks continually in a sequential fashion. The fundamental challenge in this learning paradigm is catastrophic forgetting previously learned tasks when the model is optimized for a new task, especially when their data is not accessible. Current architectural-based methods aim at alleviating the catastrophic forgetting problem but at the expense of expanding the capacity of the model. Regularization-based methods maintain a fixed model capacity; however, previous studies showed the huge performance degradation of these methods when the task identity is not available during inference (e.g. class incremental learning scenario). In this work, we propose a novel architectural-based method referred as SpaceNet for class incremental learning scenario where we utilize the available fixed capacity of the model intelligently. SpaceNet trains sparse deep neural networks from scratch in an adaptive way that compresses the sparse connections of each task in a compact number of neurons. The adaptive training of the sparse connections results in sparse representations that reduce the interference between the tasks. Experimental results show the robustness of our proposed method against catastrophic forgetting old tasks and the efficiency of SpaceNet in utilizing the available capacity of the model, leaving space for more tasks to be learned. In particular, when SpaceNet is tested on the well-known benchmarks for CL: split MNIST, split Fashion-MNIST, and CIFAR-10/100, it outperforms regularization-based methods by a big performance gap. Moreover, it achieves better performance than architectural-based methods without model expansion and achieved comparable results with rehearsal-based methods, while offering a huge memory reduction.Comment: Accepted in Neurocomputing Journa

    Deep learning based approaches for imitation learning.

    Get PDF
    Imitation learning refers to an agent's ability to mimic a desired behaviour by learning from observations. The field is rapidly gaining attention due to recent advances in computational and communication capabilities as well as rising demand for intelligent applications. The goal of imitation learning is to describe the desired behaviour by providing demonstrations rather than instructions. This enables agents to learn complex behaviours with general learning methods that require minimal task specific information. However, imitation learning faces many challenges. The objective of this thesis is to advance the state of the art in imitation learning by adopting deep learning methods to address two major challenges of learning from demonstrations. Firstly, representing the demonstrations in a manner that is adequate for learning. We propose novel Convolutional Neural Networks (CNN) based methods to automatically extract feature representations from raw visual demonstrations and learn to replicate the demonstrated behaviour. This alleviates the need for task specific feature extraction and provides a general learning process that is adequate for multiple problems. The second challenge is generalizing a policy over unseen situations in the training demonstrations. This is a common problem because demonstrations typically show the best way to perform a task and don't offer any information about recovering from suboptimal actions. Several methods are investigated to improve the agent's generalization ability based on its initial performance. Our contributions in this area are three fold. Firstly, we propose an active data aggregation method that queries the demonstrator in situations of low confidence. Secondly, we investigate combining learning from demonstrations and reinforcement learning. A deep reward shaping method is proposed that learns a potential reward function from demonstrations. Finally, memory architectures in deep neural networks are investigated to provide context to the agent when taking actions. Using recurrent neural networks addresses the dependency between the state-action sequences taken by the agent. The experiments are conducted in simulated environments on 2D and 3D navigation tasks that are learned from raw visual data, as well as a 2D soccer simulator. The proposed methods are compared to state of the art deep reinforcement learning methods. The results show that deep learning architectures can learn suitable representations from raw visual data and effectively map them to atomic actions. The proposed methods for addressing generalization show improvements over using supervised learning and reinforcement learning alone. The results are thoroughly analysed to identify the benefits of each approach and situations in which it is most suitable
    • …
    corecore