1,043 research outputs found

    VLSI implementation of a multi-mode turbo/LDPC decoder architecture

    Get PDF
    Flexible and reconfigurable architectures have gained wide popularity in the communications field. In particular, reconfigurable architectures for the physical layer are an attractive solution not only to switch among different coding modes but also to achieve interoperability. This work concentrates on the design of a reconfigurable architecture for both turbo and LDPC codes decoding. The novel contributions of this paper are: i) tackling the reconfiguration issue introducing a formal and systematic treatment that, to the best of our knowledge, was not previously addressed; ii) proposing a reconfigurable NoCbased turbo/LDPC decoder architecture and showing that wide flexibility can be achieved with a small complexity overhead. Obtained results show that dynamic switching between most of considered communication standards is possible without pausing the decoding activity. Moreover, post-layout results show that tailoring the proposed architecture to the WiMAX standard leads to an area occupation of 2.75 mm2 and a power consumption of 101.5 mW in the worst case

    FLARES: an aging aware algorithm to autonomously adapt the error correction capability in NAND Flash memories

    Get PDF
    With the advent of solid-state storage systems, NAND flash memories are becoming a key storage technology. However, they suffer from serious reliability and endurance issues during the operating lifetime that can be handled by the use of appropriate error correction codes (ECC) in order to reconstruct the information when needed.. Adaptable ECCs may provide the flexibility to avoid worst-case reliability design thus leading to improved performance. However, a way to control such adaptable ECCs strength is required. This paper proposes FLARES, an algorithm able to adapt the ECC correction capability of each page of a flash based on a flash RBER prediction model and on a measurement of the number of errors detected in a given time window. FLARES has been fully implemented within the YAFFS 2 filesystem under the Linux operating system. This allowed us to perform an extensive set of simulations on a set of standard benchmarks that highlighted the benefit of FLARES on the overall storage subsystem performance
    corecore