7,266 research outputs found

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Quadtree Structured Approximation Algorithms

    Get PDF
    The success of many image restoration algorithms is often due to their ability to sparsely describe the original signal. Many sparse promoting transforms exist, including wavelets, the so called ‘lets’ family of transforms and more recent non-local learned transforms. The first part of this thesis reviews sparse approximation theory, particularly in relation to 2-D piecewise polynomial signals. We also show the connection between this theory and current state of the art algorithms that cover the following image restoration and enhancement applications: denoising, deconvolution, interpolation and multi-view super resolution. In [63], Shukla et al. proposed a compression algorithm, based on a sparse quadtree decomposition model, which could optimally represent piecewise polynomial images. In the second part of this thesis we adapt this model to image restoration by changing the rate-distortion penalty to a description-length penalty. Moreover, one of the major drawbacks of this type of approximation is the computational complexity required to find a suitable subspace for each node of the quadtree. We address this issue by searching for a suitable subspace much more efficiently using the mathematics of updating matrix factorisations. Novel algorithms are developed to tackle the four problems previously mentioned. Simulation results indicate that we beat state of the art results when the original signal is in the model (e.g. depth images) and are competitive for natural images when the degradation is high.Open Acces

    Digital Signal Processing Group

    Get PDF
    Contains an introduction and reports on nineteen research projects.U.S. Navy - Office of Naval Research (Contract N00014-77-C-0266)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)National Science Foundation (Grant ECS80-07102)Bell Laboratories FellowshipAmoco Foundation FellowshipU.S. Navy - Office of Naval Research (Contract N00014-77-C-0196)Schlumberger-Doll Research Center FellowshipToshiba Company FellowshipVinton Hayes FellowshipHertz Foundation Fellowshi
    • …
    corecore