7,365 research outputs found

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    An M-QAM Signal Modulation Recognition Algorithm in AWGN Channel

    Full text link
    Computing the distinct features from input data, before the classification, is a part of complexity to the methods of Automatic Modulation Classification (AMC) which deals with modulation classification was a pattern recognition problem. Although the algorithms that focus on MultiLevel Quadrature Amplitude Modulation (M-QAM) which underneath different channel scenarios was well detailed. A search of the literature revealed indicates that few studies were done on the classification of high order M-QAM modulation schemes like128-QAM, 256-QAM, 512-QAM and1024-QAM. This work is focusing on the investigation of the powerful capability of the natural logarithmic properties and the possibility of extracting Higher-Order Cumulant's (HOC) features from input data received raw. The HOC signals were extracted under Additive White Gaussian Noise (AWGN) channel with four effective parameters which were defined to distinguished the types of modulation from the set; 4-QAM~1024-QAM. This approach makes the recognizer more intelligent and improves the success rate of classification. From simulation results, which was achieved under statistical models for noisy channels, manifest that recognized algorithm executes was recognizing in M-QAM, furthermore, most results were promising and showed that the logarithmic classifier works well over both AWGN and different fading channels, as well as it can achieve a reliable recognition rate even at a lower signal-to-noise ratio (less than zero), it can be considered as an Integrated Automatic Modulation Classification (AMC) system in order to identify high order of M-QAM signals that applied a unique logarithmic classifier, to represents higher versatility, hence it has a superior performance via all previous works in automatic modulation identification systemComment: 18 page

    Innovating with Artificial Intelligence: Capturing the Constructive Functional Capabilities of Deep Generative Learning

    Get PDF
    As an emerging species of artificial intelligence, deep generative learning models can generate an unprecedented variety of new outputs. Examples include the creation of music, text-to-image translation, or the imputation of missing data. Similar to other AI models that already evoke significant changes in society and economy, there is a need for structuring the constructive functional capabilities of DGL. To derive and discuss them, we conducted an extensive and structured literature review. Our results reveal a substantial scope of six constructive functional capabilities demonstrating that DGL is not exclusively used to generate unseen outputs. Our paper further guides companies in capturing and evaluating DGL’s potential for innovation. Besides, our paper fosters an understanding of DGL and provides a conceptual basis for further research

    Function Approximation With Multilayered Perceptrons Using L1 Criterion

    Get PDF
    Kaedah ralat kuasa dua terkecil atau kaedah kriteria L2 biasanya digunakan bagi persoalan penghampiran fungsian dan pengitlakan di dalam algoritma perambatan balik ralat. Tujuan kajian ini adalah untuk mempersembahkan suatu kriteria ralat mutlak terkecil bagi perambatan balik sigmoid selain daripada kriteria ralat kuasa dua terkecil yang biasa digunakan. Kami membentangkan struktur fungsi ralat untuk diminimumkan serta hasil pembezaan terhadap pemberat yang akan dikemaskinikan. Tumpuan ·kajian ini ialah terhadap model perseptron multilapisan yang mempunyai satu lapisan tersembunyi tetapi perlaksanaannya boleh dilanjutkan kepada model yang mempunyai dua atau lebih lapisan tersembunyi. The least squares error or L2 criterion approach has been commonly used in functional approximation and generalization in the error backpropagation algorithm. The purpose of this study is to present an absolute error criterion for the sigmoidal backpropagatioll I rather than the usual least squares error criterion. We present the structure of the error function to be minimized and its derivatives with respect to the weights to be updated. The focus in the study is on the single hidden layer multilayer perceptron (MLP) but the implementation may be extended to include two or more hidden layers
    corecore