43,156 research outputs found

    The H.E.S.S. central data acquisition system

    Full text link
    The High Energy Stereoscopic System (H.E.S.S.) is a system of Imaging Atmospheric Cherenkov Telescopes (IACTs) located in the Khomas Highland in Namibia. It measures cosmic gamma rays of very high energies (VHE; >100 GeV) using the Earth's atmosphere as a calorimeter. The H.E.S.S. Array entered Phase II in September 2012 with the inauguration of a fifth telescope that is larger and more complex than the other four. This paper will give an overview of the current H.E.S.S. central data acquisition (DAQ) system with particular emphasis on the upgrades made to integrate the fifth telescope into the array. At first, the various requirements for the central DAQ are discussed then the general design principles employed to fulfil these requirements are described. Finally, the performance, stability and reliability of the H.E.S.S. central DAQ are presented. One of the major accomplishments is that less than 0.8% of observation time has been lost due to central DAQ problems since 2009.Comment: 17 pages, 8 figures, published in Astroparticle Physic

    IMP Science Gateway: from the Portal to the Hub of Virtual Experimental Labs in Materials Science

    Full text link
    "Science gateway" (SG) ideology means a user-friendly intuitive interface between scientists (or scientific communities) and different software components + various distributed computing infrastructures (DCIs) (like grids, clouds, clusters), where researchers can focus on their scientific goals and less on peculiarities of software/DCI. "IMP Science Gateway Portal" (http://scigate.imp.kiev.ua) for complex workflow management and integration of distributed computing resources (like clusters, service grids, desktop grids, clouds) is presented. It is created on the basis of WS-PGRADE and gUSE technologies, where WS-PGRADE is designed for science workflow operation and gUSE - for smooth integration of available resources for parallel and distributed computing in various heterogeneous distributed computing infrastructures (DCI). The typical scientific workflows with possible scenarios of its preparation and usage are presented. Several typical use cases for these science applications (scientific workflows) are considered for molecular dynamics (MD) simulations of complex behavior of various nanostructures (nanoindentation of graphene layers, defect system relaxation in metal nanocrystals, thermal stability of boron nitride nanotubes, etc.). The user experience is analyzed in the context of its practical applications for MD simulations in materials science, physics and nanotechnologies with available heterogeneous DCIs. In conclusion, the "science gateway" approach - workflow manager (like WS-PGRADE) + DCI resources manager (like gUSE)- gives opportunity to use the SG portal (like "IMP Science Gateway Portal") in a very promising way, namely, as a hub of various virtual experimental labs (different software components + various requirements to resources) in the context of its practical MD applications in materials science, physics, chemistry, biology, and nanotechnologies.Comment: 6 pages, 5 figures, 3 tables; 6th International Workshop on Science Gateways, IWSG-2014 (Dublin, Ireland, 3-5 June, 2014). arXiv admin note: substantial text overlap with arXiv:1404.545

    icet - A Python library for constructing and sampling alloy cluster expansions

    Full text link
    Alloy cluster expansions (CEs) provide an accurate and computationally efficient mapping of the potential energy surface of multi-component systems that enables comprehensive sampling of the many-dimensional configuration space. Here, we introduce \textsc{icet}, a flexible, extensible, and computationally efficient software package for the construction and sampling of CEs. \textsc{icet} is largely written in Python for easy integration in comprehensive workflows, including first-principles calculations for the generation of reference data and machine learning libraries for training and validation. The package enables training using a variety of linear regression algorithms with and without regularization, Bayesian regression, feature selection, and cross-validation. It also provides complementary functionality for structure enumeration and mapping as well as data management and analysis. Potential applications are illustrated by two examples, including the computation of the phase diagram of a prototypical metallic alloy and the analysis of chemical ordering in an inorganic semiconductor.Comment: 10 page
    • …
    corecore