205 research outputs found

    On redundancy in linked geospatial data

    Full text link
    RCC8 is a constraint language that serves for qualitative spatial representation and reasoning by encoding the topological relations between spatial entities. As such, RCC8 has been recently adopted by GeoSPARQL in an effort to enrich the Semantic Web with qualitative spatial relations. We focus on the redundancy that these data might harbor, which can throttle graph related applications, such as storing, representing, querying, and reasoning. For a RCC8 network N a constraint is redundant, if removing that constraint from N does not change the solution set of N. A prime network of N is a network which contains no redundant constraints, but has the same solution set as N. In this paper, we present a practical approach for obtaining the prime networks of RCC8 networks that originate from the Semantic Web, by exploiting the sparse and loosely connected structure of their constraint graphs, and, consequently, contribute towards offering Linked Geospatial Data of high quality. Experimental evaluation exhibits a vast decrease in the total number of non-redundant constraints that we can obtain from an initial network, while it also suggests that our approach significantly boosts the state-of-the-art approach

    Collective Singleton-Based Consistency for Qualitative Constraint Networks

    Get PDF
    Partial singleton closure under weak composition, or partial singleton (weak) path-consistency for short, is essential for approximating satisfiability of qualitative constraints networks. Briefly put, partial singleton path-consistency ensures that each base relation of each of the constraints of a qualitative constraint network can define a singleton relation in the corresponding partial closure of that network under weak composition, or in its corresponding partially (weak) path-consistent subnetwork for short. In particular, partial singleton path-consistency has been shown to play a crucial role in tackling the minimal labeling problem of a qualitative constraint network, which is the problem of finding the strongest implied constraints of that network. In this paper, we propose a stronger local consistency that couples partial singleton path-consistency with the idea of collectively deleting certain unfeasible base relations by exploiting singleton checks. We then propose an efficient algorithm for enforcing this consistency that, given a qualitative constraint network, performs fewer constraint checks than the respective algorithm for enforcing partial singleton path-consistency in that network. We formally prove certain properties of our new local consistency, and motivate its usefulness through demonstrative examples and a preliminary experimental evaluation with qualitative constraint networks of Interval Algebra

    Large Scale Qualitative Spatio-Temporal Reasoning

    Get PDF
    This thesis considers qualitative spatio-temporal reasoning (QSTR), a branch of artificial intelligence that is concerned with qualitative spatial and temporal relations between entities. Despite QSTR being an active area of research for many years, there has been comparatively little work looking at large scale qualitative spatio-temporal reasoning - reasoning using hundreds of thousands or millions of relations. The big data phenomenon of recent years means there is now a requirement for QSTR implementations that will scale effectively and reason using large scale datasets. However, existing reasoners are limited in their scalability, what is needed are new approaches to QSTR. This thesis considers whether parallel distributed programming techniques can be used to address the challenges of large scale QSTR. Specifically, this thesis presents the first in-depth investigation of adapting QSTR techniques to work in a distributed environment. This has resulted in a large scale qualitative spatial reasoner, ParQR, which has been evaluated by comparing it with existing reasoners and alternative approaches to large scale QSTR. ParQR has been shown to outperform existing solutions, reasoning using far larger datasets than previously possible. The thesis then considers a specific application of large scale QSTR, querying knowledge graphs. This has two parts to it. First, integrating large scale complex spatial datasets to generate an enhanced knowledge graph that can support qualitative spatial reasoning, and secondly, adapting parallel, distributed QSTR techniques to implement a query answering system for spatial knowledge graphs. The query engine that has been developed is able to provide solutions to a variety of spatial queries. It has been evaluated and shown to provide more comprehensive query results in comparison to using quantitative only techniques

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Improved K-means clustering algorithms : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science, Massey University, New Zealand

    Get PDF
    K-means clustering algorithm is designed to divide the samples into subsets with the goal that maximizes the intra-subset similarity and inter-subset dissimilarity where the similarity measures the relationship between two samples. As an unsupervised learning technique, K-means clustering algorithm is considered one of the most used clustering algorithms and has been applied in a variety of areas such as artificial intelligence, data mining, biology, psychology, marketing, medicine, etc. K-means clustering algorithm is not robust and its clustering result depends on the initialization, the similarity measure, and the predefined cluster number. Previous research focused on solving a part of these issues but has not focused on solving them in a unified framework. However, fixing one of these issues does not guarantee the best performance. To improve K-means clustering algorithm, one of the most famous and widely used clustering algorithms, by solving its issues simultaneously is challenging and significant. This thesis conducts an extensive research on K-means clustering algorithm aiming to improve it. First, we propose the Initialization-Similarity (IS) clustering algorithm to solve the issues of the initialization and the similarity measure of K-means clustering algorithm in a unified way. Specifically, we propose to fix the initialization of the clustering by using sum-of-norms (SON) which outputs the new representation of the original samples and to learn the similarity matrix based on the data distribution. Furthermore, the derived new representation is used to conduct K-means clustering. Second, we propose a Joint Feature Selection with Dynamic Spectral (FSDS) clustering algorithm to solve the issues of the cluster number determination, the similarity measure, and the robustness of the clustering by selecting effective features and reducing the influence of outliers simultaneously. Specifically, we propose to learn the similarity matrix based on the data distribution as well as adding the ranked constraint on the Laplacian matrix of the learned similarity matrix to automatically output the cluster number. Furthermore, the proposed algorithm employs the L2,1-norm as the sparse constraints on the regularization term and the loss function to remove the redundant features and reduce the influence of outliers respectively. Third, we propose a Joint Robust Multi-view (JRM) spectral clustering algorithm that conducts clustering for multi-view data while solving the initialization issue, the cluster number determination, the similarity measure learning, the removal of the redundant features, and the reduction of outlier influence in a unified way. Finally, the proposed algorithms outperformed the state-of-the-art clustering algorithms on real data sets. Moreover, we theoretically prove the convergences of the proposed optimization methods for the proposed objective functions

    A survey of qualitative spatial representations

    Get PDF
    Representation and reasoning with qualitative spatial relations is an important problem in artificial intelligence and has wide applications in the fields of geographic information system, computer vision, autonomous robot navigation, natural language understanding, spatial databases and so on. The reasons for this interest in using qualitative spatial relations include cognitive comprehensibility, efficiency and computational facility. This paper summarizes progress in qualitative spatial representation by describing key calculi representing different types of spatial relationships. The paper concludes with a discussion of current research and glimpse of future work

    Improving Model Finding for Integrated Quantitative-qualitative Spatial Reasoning With First-order Logic Ontologies

    Get PDF
    Many spatial standards are developed to harmonize the semantics and specifications of GIS data and for sophisticated reasoning. All these standards include some types of simple and complex geometric features, and some of them incorporate simple mereotopological relations. But the relations as used in these standards, only allow the extraction of qualitative information from geometric data and lack formal semantics that link geometric representations with mereotopological or other qualitative relations. This impedes integrated reasoning over qualitative data obtained from geometric sources and “native” topological information – for example as provided from textual sources where precise locations or spatial extents are unknown or unknowable. To address this issue, the first contribution in this dissertation is a first-order logical ontology that treats geometric features (e.g. polylines, polygons) and relations between them as specializations of more general types of features (e.g. any kind of 2D or 1D features) and mereotopological relations between them. Key to this endeavor is the use of a multidimensional theory of space wherein, unlike traditional logical theories of mereotopology (like RCC), spatial entities of different dimensions can co-exist and be related. However terminating or tractable reasoning with such an expressive ontology and potentially large amounts of data is a challenging AI problem. Model finding tools used to verify FOL ontologies with data usually employ a SAT solver to determine the satisfiability of the propositional instantiations (SAT problems) of the ontology. These solvers often experience scalability issues with increasing number of objects and size and complexity of the ontology, limiting its use to ontologies with small signatures and building small models with less than 20 objects. To investigate how an ontology influences the size of its SAT translation and consequently the model finder’s performance, we develop a formalization of FOL ontologies with data. We theoretically identify parameters of an ontology that significantly contribute to the dramatic growth in size of the SAT problem. The search space of the SAT problem is exponential in the signature of the ontology (the number of predicates in the axiomatization and any additional predicates from skolemization) and the number of distinct objects in the model. Axiomatizations that contain many definitions lead to large number of SAT propositional clauses. This is from the conversion of biconditionals to clausal form. We therefore postulate that optional definitions are ideal sentences that can be eliminated from an ontology to boost model finder’s performance. We then formalize optional definition elimination (ODE) as an FOL ontology preprocessing step and test the simplification on a set of spatial benchmark problems to generate smaller SAT problems (with fewer clauses and variables) without changing the satisfiability and semantic meaning of the problem. We experimentally demonstrate that the reduction in SAT problem size also leads to improved model finding with state-of-the-art model finders, with speedups of 10-99%. Altogether, this dissertation improves spatial reasoning capabilities using FOL ontologies – in terms of a formal framework for integrated qualitative-geometric reasoning, and specific ontology preprocessing steps that can be built into automated reasoners to achieve better speedups in model finding times, and scalability with moderately-sized datasets

    Qualitative Spatial Configuration Queries Towards Next Generation Access Methods for GIS

    Get PDF
    For a long time survey, management, and provision of geographic information in Geographic Information Systems (GIS) have mainly had an authoritative nature. Today the trend is changing and such an authoritative geographic information source is now accompanied by a public and freely available one which is usually referred to as Volunteered Geographic Information (VGI). Actually, the term VGI does not refer only to the mere geographic information, but, more generally, to the whole process which assumes the engagement of volunteers to collect and maintain such information in freely accessible GIS. The quick spread of VGI gives new relevance to a well-known challenge: developing new methods and techniques to ease down the interaction between users and GIS. Indeed, in spite of continuous improvements, GIS mainly provide interfaces tailored for experts, denying the casual user usually a non-expert the possibility to access VGI information. One main obstacle resides in the different ways GIS and humans deal with spatial information: GIS mainly encode spatial information in a quantitative format, whereas human beings typically prefer a qualitative and relational approach. For example, we use expressions like the lake is to the right-hand side of the wood or is there a supermarket close to the university? which qualitatively locate a spatial entity with respect to another. Nowadays, such a gap in representation has to be plugged by the user, who has to learn about the system structure and to encode his requests in a form suitable to the system. Contrarily, enabling gis to explicitly deal with qualitative spatial information allows for shifting the translation effort to the system side. Thus, to facilitate the interaction with human beings, GIS have to be enhanced with tools for efficiently handling qualitative spatial information. The work presented in this thesis addresses the problem of enabling Qualitative Spatial Configuration Queries (QSCQs) in GIS. A QSCQ is a spatial database query which allows for an automatic mapping of spatial descriptions produced by humans: A user naturally expresses his request of spatial information by drawing a sketch map or producing a verbal description. The qualitative information conveyed by such descriptions is automatically extracted and encoded into a QSCQ. The focus of this work is on two main challenges: First, the development of a framework that allows for managing in a spatial database the variety of spatial aspects that might be enclosed in a spatial description produced by a human. Second, the conception of Qualitative Spatial Access Methods (QSAMs): algorithms and data structures tailored for efficiently solving QSCQs. The main objective of a QSAM is that of countering the exponential explosion in terms of storage space occurring when switching from a quantitative to a qualitative spatial representation while keeping query response time acceptable

    Spatio-Temporal Stream Reasoning with Adaptive State Stream Generation

    Full text link
    • …
    corecore