160 research outputs found

    Phase Transitions of Best-of-Two and Best-of-Three on Stochastic Block Models

    Get PDF
    This paper is concerned with voting processes on graphs where each vertex holds one of two different opinions. In particular, we study the \emph{Best-of-two} and the \emph{Best-of-three}. Here at each synchronous and discrete time step, each vertex updates its opinion to match the majority among the opinions of two random neighbors and itself (the Best-of-two) or the opinions of three random neighbors (the Best-of-three). Previous studies have explored these processes on complete graphs and expander graphs, but we understand significantly less about their properties on graphs with more complicated structures. In this paper, we study the Best-of-two and the Best-of-three on the stochastic block model G(2n,p,q)G(2n,p,q), which is a random graph consisting of two distinct Erd\H{o}s-R\'enyi graphs G(n,p)G(n,p) joined by random edges with density q≀pq\leq p. We obtain two main results. First, if p=ω(log⁥n/n)p=\omega(\log n/n) and r=q/pr=q/p is a constant, we show that there is a phase transition in rr with threshold r∗r^* (specifically, r∗=5−2r^*=\sqrt{5}-2 for the Best-of-two, and r∗=1/7r^*=1/7 for the Best-of-three). If r>r∗r>r^*, the process reaches consensus within O(log⁥log⁥n+log⁥n/log⁥(np))O(\log \log n+\log n/\log (np)) steps for any initial opinion configuration with a bias of Ω(n)\Omega(n). By contrast, if r<r∗r<r^*, then there exists an initial opinion configuration with a bias of Ω(n)\Omega(n) from which the process requires at least 2Ω(n)2^{\Omega(n)} steps to reach consensus. Second, if pp is a constant and r>r∗r>r^*, we show that, for any initial opinion configuration, the process reaches consensus within O(log⁥n)O(\log n) steps. To the best of our knowledge, this is the first result concerning multiple-choice voting for arbitrary initial opinion configurations on non-complete graphs

    Fast plurality consensus in regular expanders

    Get PDF
    Pull voting is a classic method to reach consensus among nn vertices with differing opinions in a distributed network: each vertex at each step takes on the opinion of a random neighbour. This method, however, suffers from two drawbacks. Even if there are only two opposing opinions, the time taken for a single opinion to emerge can be slow and the final opinion is not necessarily the initially held majority. We refer to a protocol where 2 neighbours are contacted at each step as a 2-sample voting protocol. In the two-sample protocol a vertex updates its opinion only if both sampled opinions are the same. Not much was known about the performance of two-sample voting on general expanders in the case of three or more opinions. In this paper we show that the following performance can be achieved on a dd-regular expander using two-sample voting. We suppose there are k≄3k \ge 3 opinions, and that the initial size of the largest and second largest opinions is A1,A2A_1, A_2 respectively. We prove that, if A1−A2≄Cnmax⁥{(log⁥n)/A1,λ}A_1 - A_2 \ge C n \max\{\sqrt{(\log n)/A_1}, \lambda\}, where λ\lambda is the absolute second eigenvalue of matrix P=Adj(G)/dP=Adj(G)/d and CC is a suitable constant, then the largest opinion wins in O((nlog⁥n)/A1)O((n \log n)/A_1) steps with high probability. For almost all dd-regular graphs, we have λ=c/d\lambda=c/\sqrt{d} for some constant c>0c>0. This means that as dd increases we can separate an opinion whose majority is o(n)o(n), whereas Θ(n)\Theta(n) majority is required for dd constant. This work generalizes the results of Becchetti et. al (SPAA 2014) for the complete graph KnK_n

    The Power of Two Choices in Distributed Voting

    Full text link
    Distributed voting is a fundamental topic in distributed computing. In pull voting, in each step every vertex chooses a neighbour uniformly at random, and adopts its opinion. The voting is completed when all vertices hold the same opinion. On many graph classes including regular graphs, pull voting requires Θ(n)\Theta(n) expected steps to complete, even if initially there are only two distinct opinions. In this paper we consider a related process which we call two-sample voting: every vertex chooses two random neighbours in each step. If the opinions of these neighbours coincide, then the vertex revises its opinion according to the chosen sample. Otherwise, it keeps its own opinion. We consider the performance of this process in the case where two different opinions reside on vertices of some (arbitrary) sets AA and BB, respectively. Here, ∣A∣+∣B∣=n|A| + |B| = n is the number of vertices of the graph. We show that there is a constant KK such that if the initial imbalance between the two opinions is ?Îœ0=(∣A∣−∣B∣)/n≄K(1/d)+(d/n)\nu_0 = (|A| - |B|)/n \geq K \sqrt{(1/d) + (d/n)}, then with high probability two sample voting completes in a random dd regular graph in O(log⁥n)O(\log n) steps and the initial majority opinion wins. We also show the same performance for any regular graph, if Îœ0≄Kλ2\nu_0 \geq K \lambda_2 where λ2\lambda_2 is the second largest eigenvalue of the transition matrix. In the graphs we consider, standard pull voting requires Ω(n)\Omega(n) steps, and the minority can still win with probability ∣B∣/n|B|/n.Comment: 22 page

    Quasi-Majority Functional Voting on Expander Graphs

    Get PDF
    Consider a distributed graph where each vertex holds one of two distinct opinions. In this paper, we are interested in synchronous voting processes where each vertex updates its opinion according to a predefined common local updating rule. For example, each vertex adopts the majority opinion among 1) itself and two randomly picked neighbors in best-of-two or 2) three randomly picked neighbors in best-of-three. Previous works intensively studied specific rules including best-of-two and best-of-three individually. In this paper, we generalize and extend previous works of best-of-two and best-of-three on expander graphs by proposing a new model, quasi-majority functional voting. This new model contains best-of-two and best-of-three as special cases. We show that, on expander graphs with sufficiently large initial bias, any quasi-majority functional voting reaches consensus within O(log⁥n)O(\log n) steps with high probability. Moreover, we show that, for any initial opinion configuration, any quasi-majority functional voting on expander graphs with higher expansion (e.g., Erd\H{o}s-R\'enyi graph G(n,p)G(n,p) with p=Ω(1/n)p=\Omega(1/\sqrt{n})) reaches consensus within O(log⁥n)O(\log n) with high probability. Furthermore, we show that the consensus time is O(log⁥n/log⁥k)O(\log n/\log k) of best-of-(2k+1)(2k+1) for k=o(n/log⁥n)k=o(n/\log n)

    Biased Consensus Dynamics on Regular Expander Graphs

    Full text link
    Consensus protocols play an important role in the study of distributed algorithms. In this paper, we study the effect of bias on two popular consensus protocols, namely, the {\em voter rule} and the {\em 2-choices rule} with binary opinions. We assume that agents with opinion 11 update their opinion with a probability q1q_1 strictly less than the probability q0q_0 with which update occurs for agents with opinion 00. We call opinion 11 as the superior opinion and our interest is to study the conditions under which the network reaches consensus on this opinion. We assume that the agents are located on the vertices of a regular expander graph with nn vertices. We show that for the voter rule, consensus is achieved on the superior opinion in O(log⁥n)O(\log n) time with high probability even if system starts with only Ω(log⁥n)\Omega(\log n) agents having the superior opinion. This is in sharp contrast to the classical voter rule where consensus is achieved in O(n)O(n) time and the probability of achieving consensus on any particular opinion is directly proportional to the initial number of agents with that opinion. For the 2-choices rule, we show that consensus is achieved on the superior opinion in O(log⁥n)O(\log n) time with high probability when the initial proportion of agents with the superior opinion is above a certain threshold. We explicitly characterise this threshold as a function of the strength of the bias and the spectral properties of the graph. We show that for the biased version of the 2-choice rule this threshold can be significantly less than that for the unbiased version of the same rule. Our techniques involve using sharp probabilistic bounds on the drift to characterise the Markovian dynamics of the system

    Phase Transition of the 2-Choices Dynamics on Core-Periphery Networks

    Full text link
    Consider the following process on a network: Each agent initially holds either opinion blue or red; then, in each round, each agent looks at two random neighbors and, if the two have the same opinion, the agent adopts it. This process is known as the 2-Choices dynamics and is arguably the most basic non-trivial opinion dynamics modeling voting behavior on social networks. Despite its apparent simplicity, 2-Choices has been analytically characterized only on networks with a strong expansion property -- under assumptions on the initial configuration that establish it as a fast majority consensus protocol. In this work, we aim at contributing to the understanding of the 2-Choices dynamics by considering its behavior on a class of networks with core-periphery structure, a well-known topological assumption in social networks. In a nutshell, assume that a densely-connected subset of agents, the core, holds a different opinion from the rest of the network, the periphery. Then, depending on the strength of the cut between the core and the periphery, a phase-transition phenomenon occurs: Either the core's opinion rapidly spreads among the rest of the network, or a metastability phase takes place, in which both opinions coexist in the network for superpolynomial time. The interest of our result is twofold. On the one hand, by looking at the 2-Choices dynamics as a simplistic model of competition among opinions in social networks, our theorem sheds light on the influence of the core on the rest of the network, as a function of the core's connectivity towards the latter. On the other hand, to the best of our knowledge, we provide the first analytical result which shows a heterogeneous behavior of a simple dynamics as a function of structural parameters of the network. Finally, we validate our theoretical predictions with extensive experiments on real networks

    Discrete Incremental Voting

    Get PDF
    We consider a type of pull voting suitable for discrete numeric opinions which can be compared on a linear scale, for example, 1 (“disagree strongly”), 2 (“disagree”), . . ., 5 (“agree strongly”). On observing the opinion of a random neighbour, a vertex changes its opinion incrementally towards the value of the neighbour’s opinion, if different. For opinions drawn from a set {1, 2, . . ., k}, the opinion of the vertex would change by +1 if the opinion of the neighbour is larger, or by −1, if it is smaller. It is not clear how to predict the outcome of this process, but we observe that the total weight of the system, that is, the sum of the individual opinions of all vertices, is a martingale. This allows us analyse the outcome of the process on some classes of dense expanders such as complete graphs K_n and random graphs G_{n,p} for suitably large p. If the average of the original opinions satisfies i ≀ c ≀ i + 1 for some integer i, then the asymptotic probability that opinion i wins is i + 1 − c, and the probability that opinion i + 1 wins is c − i. With high probability, the winning opinion cannot be other than i or i + 1. To contrast this, we show that for a path and opinions 0, 1, 2 arranged initially in non-decreasing order along the path, the outcome is very different. Any of the opinions can win with constant probability, provided that each of the two extreme opinions 0 and 2 is initially supported by a constant fraction of vertices.</p

    Bounds on the Voter Model in Dynamic Networks

    Get PDF
    In the voter model, each node of a graph has an opinion, and in every round each node chooses independently a random neighbour and adopts its opinion. We are interested in the consensus time, which is the first point in time where all nodes have the same opinion. We consider dynamic graphs in which the edges are rewired in every round (by an adversary) giving rise to the graph sequence G1,G2,
G_1, G_2, \dots , where we assume that GiG_i has conductance at least ϕi\phi_i. We assume that the degrees of nodes don't change over time as one can show that the consensus time can become super-exponential otherwise. In the case of a sequence of dd-regular graphs, we obtain asymptotically tight results. Even for some static graphs, such as the cycle, our results improve the state of the art. Here we show that the expected number of rounds until all nodes have the same opinion is bounded by O(m/(dmin⋅ϕ))O(m/(d_{min} \cdot \phi)), for any graph with mm edges, conductance ϕ\phi, and degrees at least dmind_{min}. In addition, we consider a biased dynamic voter model, where each opinion ii is associated with a probability PiP_i, and when a node chooses a neighbour with that opinion, it adopts opinion ii with probability PiP_i (otherwise the node keeps its current opinion). We show for any regular dynamic graph, that if there is an Ï”>0\epsilon>0 difference between the highest and second highest opinion probabilities, and at least Ω(log⁥n)\Omega(\log n) nodes have initially the opinion with the highest probability, then all nodes adopt w.h.p. that opinion. We obtain a bound on the convergences time, which becomes O(log⁥n/ϕ)O(\log n/\phi) for static graphs
    • 

    corecore