174 research outputs found

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    An edge-queued datagram service for all datacenter traffic

    Get PDF
    Modern datacenters support a wide range of protocols and in-network switch enhancements aimed at improving performance. Unfortunately, the resulting protocols often do not coexist gracefully because they inevitably interact via queuing in the network. In this paper we describe EQDS, a new datagram service for datacenters that moves almost all of the queuing out of the core network and into the sending host. This enables it to support multiple (conflicting) higher layer protocols, while only sending packets into the network according to any receiver-driven credit scheme. EQDS can transparently speed up legacy TCP and RDMA stacks, and enables transport protocol evolution, while benefiting from future switch enhancements without needing to modify higher layer stacks. We show through simulation and multiple implementations that EQDS can reduce FCT of legacy TCP by 2x, improve the NVMeOF-RDMA throughput by 30%, and safely run TCP alongside RDMA on the same network

    Impact of RoCE Congestion Control Policies on Distributed Training of DNNs

    Full text link
    RDMA over Converged Ethernet (RoCE) has gained significant attraction for datacenter networks due to its compatibility with conventional Ethernet-based fabric. However, the RDMA protocol is efficient only on (nearly) lossless networks, emphasizing the vital role of congestion control on RoCE networks. Unfortunately, the native RoCE congestion control scheme, based on Priority Flow Control (PFC), suffers from many drawbacks such as unfairness, head-of-line-blocking, and deadlock. Therefore, in recent years many schemes have been proposed to provide additional congestion control for RoCE networks to minimize PFC drawbacks. However, these schemes are proposed for general datacenter environments. In contrast to the general datacenters that are built using commodity hardware and run general-purpose workloads, high-performance distributed training platforms deploy high-end accelerators and network components and exclusively run training workloads using collectives (All-Reduce, All-To-All) communication libraries for communication. Furthermore, these platforms usually have a private network, separating their communication traffic from the rest of the datacenter traffic. Scalable topology-aware collective algorithms are inherently designed to avoid incast patterns and balance traffic optimally. These distinct features necessitate revisiting previously proposed congestion control schemes for general-purpose datacenter environments. In this paper, we thoroughly analyze some of the SOTA RoCE congestion control schemes vs. PFC when running on distributed training platforms. Our results indicate that previously proposed RoCE congestion control schemes have little impact on the end-to-end performance of training workloads, motivating the necessity of designing an optimized, yet low-overhead, congestion control scheme based on the characteristics of distributed training platforms and workloads

    Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs

    Full text link
    As communication protocols evolve, datacenter network utilization increases. As a result, congestion is more frequent, causing higher latency and packet loss. Combined with the increasing complexity of workloads, manual design of congestion control (CC) algorithms becomes extremely difficult. This calls for the development of AI approaches to replace the human effort. Unfortunately, it is currently not possible to deploy AI models on network devices due to their limited computational capabilities. Here, we offer a solution to this problem by building a computationally-light solution based on a recent reinforcement learning CC algorithm [arXiv:2207.02295]. We reduce the inference time of RL-CC by x500 by distilling its complex neural network into decision trees. This transformation enables real-time inference within the μ\mu-sec decision-time requirement, with a negligible effect on quality. We deploy the transformed policy on NVIDIA NICs in a live cluster. Compared to popular CC algorithms used in production, RL-CC is the only method that performs well on all benchmarks tested over a large range of number of flows. It balances multiple metrics simultaneously: bandwidth, latency, and packet drops. These results suggest that data-driven methods for CC are feasible, challenging the prior belief that handcrafted heuristics are necessary to achieve optimal performance
    • …
    corecore