127 research outputs found

    Adorym: A multi-platform generic x-ray image reconstruction framework based on automatic differentiation

    Full text link
    We describe and demonstrate an optimization-based x-ray image reconstruction framework called Adorym. Our framework provides a generic forward model, allowing one code framework to be used for a wide range of imaging methods ranging from near-field holography to and fly-scan ptychographic tomography. By using automatic differentiation for optimization, Adorym has the flexibility to refine experimental parameters including probe positions, multiple hologram alignment, and object tilts. It is written with strong support for parallel processing, allowing large datasets to be processed on high-performance computing systems. We demonstrate its use on several experimental datasets to show improved image quality through parameter refinement

    Roadmap on structured light

    Get PDF
    Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized

    Recent Advances in the Processing and Rendering Algorithms for Computer-Generated Holography

    Get PDF
    Digital holography represents a novel media which promises to revolutionize the way the users interacts with content. This paper presents an in-depth review of the state-of-the-art algorithms for advanced processing and rendering of computer-generated holography. Open-access holographic data are selected and characterized as references for the experimental analysis. The design of a tool for digital hologram rendering and quality evaluation is presented and implemented as an open-source reference software, with the aim to encourage the approach to the holography research area, and simplify the rendering and quality evaluation tasks. Exploration studies focused on the reproducibility of the results are reported, showing a practical application of the proposed architecture for standardization activities. A final discussion on the results obtained is reported, also highlighting the future developments of the reconstruction software that is made publicly available with this work

    Coherent and Holographic Imaging Methods for Immersive Near-Eye Displays

    Get PDF
    Lähinäytöt on suunniteltu tarjoamaan realistisia kolmiulotteisia katselukokemuksia, joille on merkittävää tarvetta esimerkiksi työkoneiden etäkäytössä ja 3D-suunnittelussa. Nykyaikaiset lähinäytöt tuottavat kuitenkin edelleen ristiriitaisia visuaalisia vihjeitä, jotka heikentävät immersiivistä kokemusta ja haittaavat niiden miellyttävää käyttöä. Merkittävänä ratkaisuvaihtoehtona pidetään koherentin valon, kuten laservalon, käyttöä näytön valaistukseen, millä voidaan korjata nykyisten lähinäyttöjen puutteita. Erityisesti koherentti valaistus mahdollistaa holografisen kuvantamisen, jota käyttävät holografiset näytöt voivat tarkasti jäljitellä kolmiulotteisten mallien todellisia valoaaltoja. Koherentin valon käyttäminen näyttöjen valaisemiseen aiheuttaa kuitenkin huomiota vaativaa korkean kontrastin häiriötä pilkkukuvioiden muodossa. Lisäksi holografisten näyttöjen laskentamenetelmät ovat laskennallisesti vaativia ja asettavat uusia haasteita analyysin, pilkkuhäiriön ja valon mallintamisen suhteen. Tässä väitöskirjassa tutkitaan laskennallisia menetelmiä lähinäytöille koherentissa kuvantamisjärjestelmässä käyttäen signaalinkäsittelyä, koneoppimista sekä geometrista (säde) ja fysikaalista (aalto) optiikan mallintamista. Työn ensimmäisessä osassa keskitytään holografisten kuvantamismuotojen analysointiin sekä kehitetään hologrammien laskennallisia menetelmiä. Holografian korkeiden laskentavaatimusten ratkaisemiseksi otamme käyttöön holografiset stereogrammit holografisen datan likimääräisenä esitysmuotona. Tarkastelemme kyseisen esitysmuodon visuaalista oikeellisuutta kehittämällä analyysikehyksen holografisen stereogrammin tarjoamien visuaalisten vihjeiden tarkkuudelle akkommodaatiota varten suhteessa sen suunnitteluparametreihin. Lisäksi ehdotamme signaalinkäsittelyratkaisua pilkkuhäiriön vähentämiseksi, ratkaistaksemme nykyisten menetelmien valon mallintamiseen liittyvät visuaalisia artefakteja aiheuttavat ongelmat. Kehitämme myös uudenlaisen holografisen kuvantamismenetelmän, jolla voidaan mallintaa tarkasti valon käyttäytymistä haastavissa olosuhteissa, kuten peiliheijastuksissa. Väitöskirjan toisessa osassa lähestytään koherentin näyttökuvantamisen laskennallista taakkaa koneoppimisen avulla. Kehitämme koherentin akkommodaatioinvariantin lähinäytön suunnittelukehyksen, jossa optimoidaan yhtäaikaisesti näytön staattista optiikka ja näytön kuvan esikäsittelyverkkoa. Lopuksi nopeutamme ehdottamaamme uutta holografista kuvantamismenetelmää koneoppimisen avulla reaaliaikaisia sovelluksia varten. Kyseiseen ratkaisuun sisältyy myös tehokkaan menettelyn kehittäminen funktionaalisten satunnais-3D-ympäristöjen tuottamiseksi. Kehittämämme menetelmä mahdollistaa suurten synteettisten moninäkökulmaisten kuvien datasettien tuottamisen, joilla voidaan kouluttaa sopivia neuroverkkoja mallintamaan holografista kuvantamismenetelmäämme reaaliajassa. Kaiken kaikkiaan tässä työssä kehitettyjen menetelmien osoitetaan olevan erittäin kilpailukykyisiä uusimpien koherentin valon lähinäyttöjen laskentamenetelmien kanssa. Työn tuloksena nähdään kaksi vaihtoehtoista lähestymistapaa ristiriitaisten visuaalisten vihjeiden aiheuttamien nykyisten lähinäyttöongelmien ratkaisemiseksi joko staattisella tai dynaamisella optiikalla ja reaaliaikaiseen käyttöön soveltuvilla laskentamenetelmillä. Esitetyt tulokset ovat näin ollen tärkeitä seuraavan sukupolven immersiivisille lähinäytöille.Near-eye displays have been designed to provide realistic 3D viewing experience, strongly demanded in applications, such as remote machine operation, entertainment, and 3D design. However, contemporary near-eye displays still generate conflicting visual cues which degrade the immersive experience and hinders their comfortable use. Approaches using coherent, e.g., laser light for display illumination have been considered prominent for tackling the current near-eye display deficiencies. Coherent illumination enables holographic imaging whereas holographic displays are expected to accurately recreate the true light waves of a desired 3D scene. However, the use of coherent light for driving displays introduces additional high contrast noise in the form of speckle patterns, which has to be taken care of. Furthermore, imaging methods for holographic displays are computationally demanding and impose new challenges in analysis, speckle noise and light modelling. This thesis examines computational methods for near-eye displays in the coherent imaging regime using signal processing, machine learning, and geometrical (ray) and physical (wave) optics modeling. In the first part of the thesis, we concentrate on analysis of holographic imaging modalities and develop corresponding computational methods. To tackle the high computational demands of holography, we adopt holographic stereograms as an approximative holographic data representation. We address the visual correctness of such representation by developing a framework for analyzing the accuracy of accommodation visual cues provided by a holographic stereogram in relation to its design parameters. Additionally, we propose a signal processing solution for speckle noise reduction to overcome existing issues in light modelling causing visual artefacts. We also develop a novel holographic imaging method to accurately model lighting effects in challenging conditions, such as mirror reflections. In the second part of the thesis, we approach the computational complexity aspects of coherent display imaging through deep learning. We develop a coherent accommodation-invariant near-eye display framework to jointly optimize static display optics and a display image pre-processing network. Finally, we accelerate the corresponding novel holographic imaging method via deep learning aimed at real-time applications. This includes developing an efficient procedure for generating functional random 3D scenes for forming a large synthetic data set of multiperspective images, and training a neural network to approximate the holographic imaging method under the real-time processing constraints. Altogether, the methods developed in this thesis are shown to be highly competitive with the state-of-the-art computational methods for coherent-light near-eye displays. The results of the work demonstrate two alternative approaches for resolving the existing near-eye display problems of conflicting visual cues using either static or dynamic optics and computational methods suitable for real-time use. The presented results are therefore instrumental for the next-generation immersive near-eye displays

    State of the art in holographic displays: A survey

    Get PDF
    True-3D imaging and display systems are based on physical duplication of light distribution. Holography is a true-3D technique. There are significant developments in electro-holographic displays in recent years. Liquid crystal, liquid crystal on silicon, optically addressed, mirror-based, holographic polymer-dispersed, and acousto-optic devices are used as holographic displays. There are complete electro-holographic display systems and some of them are already commercialized. © 2006 IEEE

    Modeling, design and optimization of computer-generated holograms with binary phases

    Get PDF
    L’hologramme généré par ordinateur (HGO) a été démontré à jouer un rôle important depuis son invention par Lohmann dans les années 1960 dans de nombreuses applications telles que l’ingénierie du front d'onde, l’éclairage structuré et l’affichage optique, etc. Dans le travail de thèse ci-présent, la modélisation, la conception et l’optimisation d’HGO avec des phases binaires sont étudiées. Nous avons examiné un système pratique de projection d’image avec certaines spécifications de travail, par exemple, une distance de travail de 40 cm, une profondeur de champ de 10 cm et un angle de diffraction de 53 degré pour une longueur d’onde de travail de 632 nm, et ensuite conçu et optimisé un hologramme de phase binaire en passant par une recherche directe binaire pour ce système d’image. L’hologramme a été fabriqué par la lithographie à faisceau d’électrons. Pour atteindre l’angle de diffraction requis, nous avons discuté de l’architecture optique dans le système de projection d’image holographique. L’HGO conçu et le système de projection d’image holographique ont été validés expérimentalement par reconstruction optique. Étant donné que les pixels finiront par se regrouper pour former des ouvertures polygonales en hologramme, qui peut être vu clairement dans le processus de recherche directe binaire, nous avons proposé une nouvelle approche pour la conception directe des ouvertures polygonales basée sur la disposition triangulaire en HGO de grande taille en pixels. La diffraction de l’ouverture a été calculée par la transformation analytique d’Abbe. L’image reconstruite peut être exprimée comme une addition cohérente de motifs de diffraction à partir de tous les bords droits d’orientations et de longueurs différentes. Une optimisation en deux étapes comprenant l’algorithme génétique avec la recherche locale de codage des phases binaires des ouvertures, suivie par la recherche directe de co-sommets flottants des ouvertures triangulaires élémentaires a été développée. Nous avons en outre proposé une disposition d’ouverture quadrilatérale, qui fournit plus de degrés de liberté et peut former des ouvertures polygonales plus diverses en hologrammes. L’algorithme génétique parallèle avec la recherche locale a été adopté dans une première étape pour assigner des phases binaires, et la recherche directe a ensuite été utilisée pour optimiser des emplacements de co-sommets d'ouvertures quadrilatérales lors de la deuxième étape. Trois schémas différents pour l'algorithme en deux étapes ont été discutés pour fournir des moyens flexibles afin d’équilibrer la performance de l’optimisation et la durée nécessaire.The computer-generated hologram (CGH) has been demonstrated to play an important role, since its invention by Lohmann in 1960s, in many applications such as wavefront engineering, structured illumination and optical display, etc. In this thesis, the modeling, design and optimization of CGH with binary phases are studied. We considered a practical projection image system with certain working specification, e.g. working distance of 40 cm, depth of field of 10 cm and a diffraction angle of 53 degree for 632 nm working wavelength, and then designed and optimized a binary-phase hologram by direct binary search for this image system. The hologram was fabricated by E-beam lithography. To achieve the required diffraction angle, we discussed the optical architecture in holographic projection image system. The designed CGH and holographic projection image system were validated experimentally by optical reconstruction. Since the pixels will eventually cluster to form polygonal apertures in hologram, which can be seen clearly during the process of direct binary search, we proposed a new approach to directly design polygonal apertures based on triangular layout in CGH of a large number of pixels. The diffraction of aperture was calculated by analytical Abbe transform. The reconstructed image can be expressed as a coherent addition of diffraction patterns from all the straight edges of different orientations and lengths. A two-step optimization including genetic algorithm with local search for encoding binary phases of apertures, followed by direct search for floating covertices of the elementary triangular apertures was developed. We further proposed a quadrilateral aperture layout, which provides more degrees of freedom and can form more diverse polygonal apertures in holograms. The parallel genetic algorithm with local search was adopted to assign binary phases in the first step, and direct search was then used to optimize of locations of covertices of quadrilateral apertures in the second step. Three different schemes for the two-step algorithm were discussed to provide flexible ways to balance the optimization performance and time cost.Résumé en espagno

    Optimization of the holographic process for imaging and lithography

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 272-297).Since their invention in 1948 by Dennis Gabor, holograms have demonstrated to be important components of a variety of optical systems and their implementation in new fields and methods is expected to continue growing. Their ability to encode 3D optical fields on a 2D plane opened the possibility of novel applications for imaging and lithography. In the traditional form, holograms are produced by the interference of a reference and object waves recording the phase and amplitude of the complex field. The holographic process has been extended to include different recording materials and methods. The increasing demand for holographic-based systems is followed by a need for efficient optimization tools designed for maximizing the performance of the optical system. In this thesis, a variety of multi-domain optimization tools designed to improve the performance of holographic optical systems are proposed. These tools are designed to be robust, computationally efficient and sufficiently general to be applied when designing various holographic systems. All the major forms of holographic elements are studied: computer generated holograms, thin and thick conventional holograms, numerically simulated holograms and digital holograms. Novel holographic optical systems for imaging and lithography are proposed. In the case of lithography, a high-resolution system based on Fresnel domain computer generated holograms (CGHs) is presented. The holograms are numerically designed using a reduced complexity hybrid optimization algorithm (HOA) based on genetic algorithms (GAs) and the modified error reduction (MER) method. The algorithm is efficiently implemented on a graphic processing unit. Simulations as well as experimental results for CGHs fabricated using electron-beam lithography are presented. A method for extending the system's depth of focus is proposed. The HOA is extended for the design and optimization of multispectral CGHs applied for high efficiency solar concentration and spectral splitting. A second lithographic system based on optically recorded total internal reflection (TIR) holograms is studied. A comparative analysis between scalar and (cont.) vector diffraction theories for the modeling and simulation of the system is performed.A complete numerical model of the system is conducted including the photoresist response and first order models for shrinkage of the holographic emulsion. A novel block-stitching algorithm is introduced for the calculation of large diffraction patterns that allows overcoming current computational limitations of memory and processing time. The numerical model is implemented for optimizing the system's performance as well as redesigning the mask to account for potential fabrication errors. The simulation results are compared to experimentally measured data. In the case of imaging, a segmented aperture thin imager based on holographically corrected gradient index lenses (GRIN) is proposed. The compound system is constrained to a maximum thickness of 5mm and utilizes an optically recorded hologram for correcting high-order optical aberrations of the GRIN lens array. The imager is analyzed using system and information theories. A multi-domain optimization approach is implemented based on GAs for maximizing the system's channel capacity and hence improving the information extraction or encoding process. A decoding or reconstruction strategy is implemented using the superresolution algorithm. Experimental results for the optimization of the hologram's recording process and the tomographic measurement of the system's space-variant point spread function are presented. A second imaging system for the measurement of complex fluid flows by tracking micron sized particles using digital holography is studied. A stochastic theoretical model based on a stability metric similar to the channel capacity for a Gaussian channel is presented and used to optimize the system. The theoretical model is first derived for the extreme case of point source particles using Rayleigh scattering and scalar diffraction theory formulations. The model is then extended to account for particles of variable sizes using Mie theory for the scattering of homogeneous dielectric spherical particles. The influence and statistics of the particle density dependent cross-talk noise are studied. Simulation and experimental results for finding the optimum particle density based on the stability metric are presented. For all the studied systems, a sensitivity analysis is performed to predict and assist in the correction of potential fabrication or calibration errors.by José Antonio Domínguez-Caballero.Ph.D

    XcalableMP PGAS Programming Language

    Get PDF
    XcalableMP is a directive-based parallel programming language based on Fortran and C, supporting a Partitioned Global Address Space (PGAS) model for distributed memory parallel systems. This open access book presents XcalableMP language from its programming model and basic concept to the experience and performance of applications described in XcalableMP.  XcalableMP was taken as a parallel programming language project in the FLAGSHIP 2020 project, which was to develop the Japanese flagship supercomputer, Fugaku, for improving the productivity of parallel programing. XcalableMP is now available on Fugaku and its performance is enhanced by the Fugaku interconnect, Tofu-D. The global-view programming model of XcalableMP, inherited from High-Performance Fortran (HPF), provides an easy and useful solution to parallelize data-parallel programs with directives for distributed global array and work distribution and shadow communication. The local-view programming adopts coarray notation from Coarray Fortran (CAF) to describe explicit communication in a PGAS model. The language specification was designed and proposed by the XcalableMP Specification Working Group organized in the PC Consortium, Japan. The Omni XcalableMP compiler is a production-level reference implementation of XcalableMP compiler for C and Fortran 2008, developed by RIKEN CCS and the University of Tsukuba. The performance of the XcalableMP program was used in the Fugaku as well as the K computer. A performance study showed that XcalableMP enables a scalable performance comparable to the message passing interface (MPI) version with a clean and easy-to-understand programming style requiring little effort

    Tools and Selected Applications

    Get PDF
    corecore