1,497 research outputs found

    Improved recursive computation of clebsch-Gordan coefficients

    Get PDF
    Fast, accurate, and stable computation of the Clebsch-Gordan (C-G) coefficients is always desirable, for example, in light scattering simulations, the translation of the multipole fields, quantum physics and chemistry. Current recursive methods for computing the C-G coefficients are often unstable for large quantum numbers due to numerical overflow or underflow. In this paper, we present an improved method, called the sign-exponent recurrence, for the recursive computation of C-G coefficients. The result shows that the proposed method can significantly improve the stability of the computation without losing its efficiency, producing accurate values for the C-G coefficients even with very large quantum numbers. (C) 2020 The Author. Published by Elsevier Ltd.Peer reviewe

    On the Computation of Clebsch-Gordan Coefficients and the Dilation Effect

    Full text link
    We investigate the problem of computing tensor product multiplicities for complex semisimple Lie algebras. Even though computing these numbers is #P-hard in general, we show that if the rank of the Lie algebra is assumed fixed, then there is a polynomial time algorithm, based on counting the lattice points in polytopes. In fact, for Lie algebras of type A_r, there is an algorithm, based on the ellipsoid algorithm, to decide when the coefficients are nonzero in polynomial time for arbitrary rank. Our experiments show that the lattice point algorithm is superior in practice to the standard techniques for computing multiplicities when the weights have large entries but small rank. Using an implementation of this algorithm, we provide experimental evidence for conjectured generalizations of the saturation property of Littlewood--Richardson coefficients. One of these conjectures seems to be valid for types B_n, C_n, and D_n.Comment: 21 pages, 6 table

    Pseudo-Character Expansions for U(N)-Invariant Spin Models on CP^{N-1}

    Full text link
    We define a set of orthogonal functions on the complex projective space CP^{N-1}, and compute their Clebsch-Gordan coefficients as well as a large class of 6-j symbols. We also provide all the needed formulae for the generation of high-temperature expansions for U(N)-invariant spin models defined on CP^{N-1}.Comment: 24 pages, no figure

    Universal Factorization of 3n−j(j>2)3n-j (j > 2) Symbols of the First and Second Kinds for SU(2) Group and Their Direct and Exact Calculation and Tabulation

    Full text link
    We show that general 3n−j(n>2)3n-j (n>2) symbols of the first kind and the second kind for the group SU(2) can be reformulated in terms of binomial coefficients. The proof is based on the graphical technique established by Yutsis, et al. and through a definition of a reduced 6−j6-j symbol. The resulting 3n−j3n-j symbols thereby take a combinatorial form which is simply the product of two factors. The one is an integer or polynomial which is the single sum over the products of reduced 6−j6-j symbols. They are in the form of summing over the products of binomial coefficients. The other is a multiplication of all the triangle relations appearing in the symbols, which can also be rewritten using binomial coefficients. The new formulation indicates that the intrinsic structure for the general recoupling coefficients is much nicer and simpler, which might serves as a bridge for the study with other fields. Along with our newly developed algorithms, this also provides a basis for a direct, exact and efficient calculation or tabulation of all the 3n−j3n-j symbols of the SU(2) group for all range of quantum angular momentum arguments. As an illustration, we present teh results for the 12−j12-j symbols of the first kind.Comment: Add tables and reference

    Tensor network states and algorithms in the presence of a global SU(2) symmetry

    Full text link
    The benefits of exploiting the presence of symmetries in tensor network algorithms have been extensively demonstrated in the context of matrix product states (MPSs). These include the ability to select a specific symmetry sector (e.g. with a given particle number or spin), to ensure the exact preservation of total charge, and to significantly reduce computational costs. Compared to the case of a generic tensor network, the practical implementation of symmetries in the MPS is simplified by the fact that tensors only have three indices (they are trivalent, just as the Clebsch-Gordan coefficients of the symmetry group) and are organized as a one-dimensional array of tensors, without closed loops. Instead, a more complex tensor network, one where tensors have a larger number of indices and/or a more elaborate network structure, requires a more general treatment. In two recent papers, namely (i) [Phys. Rev. A 82, 050301 (2010)] and (ii) [Phys. Rev. B 83, 115125 (2011)], we described how to incorporate a global internal symmetry into a generic tensor network algorithm based on decomposing and manipulating tensors that are invariant under the symmetry. In (i) we considered a generic symmetry group G that is compact, completely reducible and multiplicity free, acting as a global internal symmetry. Then in (ii) we described the practical implementation of Abelian group symmetries. In this paper we describe the implementation of non-Abelian group symmetries in great detail and for concreteness consider an SU(2) symmetry. Our formalism can be readily extended to more exotic symmetries associated with conservation of total fermionic or anyonic charge. As a practical demonstration, we describe the SU(2)-invariant version of the multi-scale entanglement renormalization ansatz and apply it to study the low energy spectrum of a quantum spin chain with a global SU(2) symmetry.Comment: 32 pages, 37 figure

    Full configuration interaction approach to the few-electron problem in artificial atoms

    Full text link
    We present a new high-performance configuration interaction code optimally designed for the calculation of the lowest energy eigenstates of a few electrons in semiconductor quantum dots (also called artificial atoms) in the strong interaction regime. The implementation relies on a single-particle representation, but it is independent of the choice of the single-particle basis and, therefore, of the details of the device and configuration of external fields. Assuming no truncation of the Fock space of Slater determinants generated from the chosen single-particle basis, the code may tackle regimes where Coulomb interaction very effectively mixes many determinants. Typical strongly correlated systems lead to very large diagonalization problems; in our implementation, the secular equation is reduced to its minimal rank by exploiting the symmetry of the effective-mass interacting Hamiltonian, including square total spin. The resulting Hamiltonian is diagonalized via parallel implementation of the Lanczos algorithm. The code gives access to both wave functions and energies of first excited states. Excellent code scalability in a parallel environment is demonstrated; accuracy is tested for the case of up to eight electrons confined in a two-dimensional harmonic trap as the density is progressively diluted and correlation becomes dominant. Comparison with previous Quantum Monte Carlo simulations in the Wigner regime demonstrates power and flexibility of the method.Comment: RevTeX 4.0, 18 pages, 6 tables, 9 postscript b/w figures. Final version with new material. Section 6 on the excitation spectrum has been added. Some material has been moved to two appendices, which appear in the EPAPS web depository in the published versio

    Phase diagram and structural properties of a simple model for one-patch particles

    Full text link
    We study the thermodynamic and structural properties of a simple, one-patch fluid model using the reference hypernetted-chain (RHNC) integral equation and specialized Monte Carlo simulations. In this model, the interacting particles are hard spheres, each of which carries a single identical, arbitrarily-oriented, attractive circular patch on its surface; two spheres attract via a simple square-well potential only if the two patches on the spheres face each other within a specific angular range dictated by the size of the patch. For a ratio of attractive to repulsive surface of 0.8, we construct the RHNC fluid-fluid separation curve and compare with that obtained by Gibbs ensemble and grand canonical Monte Carlo simulations. We find that RHNC provides a quick and highly reliable estimate for the position of the fluid-fluid critical line. In addition, it gives a detailed (though approximate) description of all structural properties and their dependence on patch size.Comment: 27 pages, 10 figures, J. Chem. Phys. in pres
    • …
    corecore