531 research outputs found

    Key-point Detection based Fast CU Decision for HEVC Intra Encoding

    Get PDF
    As the most recent video coding standard, High Efficiency Video Coding (HEVC) adopts various novel techniques, including a quad-tree based coding unit (CU) structure and additional angular modes used for intra encoding. These newtechniques achieve a notable improvement in coding efficiency at the penalty of significant computational complexity increase. Thus, a fast HEVC coding algorithm is highly desirable. In this paper, we propose a fast intra CU decision algorithm for HEVC to reduce the coding complexity, mainly based on a key-point detection. A CU block is considered to have multiple gradients and is early split if corner points are detected inside the block. On the other hand, a CU block without corner points is treated to be terminated when its RD cost is also small according to statistics of the previous frames. The proposed fast algorithm achieves over 62% encoding time reduction with 3.66%, 2.82%, and 2.53% BD-Rate loss for Y, U, and V components, averagely. The experimental results show that the proposed method is efficient to fast decide CU size in HEVC intra coding, even though only static parameters are applied to all test sequences

    Modified intra prediction unit size selection algorithm for H.265/ HEVC compression systems

    Get PDF
    With the increased computational complexity of H.265/HEVC video compression fast decision on prediction unit size is essential for real-time coding applications. In this paper we provide an overview of existing intra prediction unit size decision algorithms and present our modification of one of the selection algorithms with improved compression performance

    Fast Intra-frame Coding Algorithm for HEVC Based on TCM and Machine Learning

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard. Compared with the previous standard H.264/AVC, it can reduce the bit-rate by around 50% while maintaining the same perceptual quality. This performance gain on compression is achieved mainly by supporting larger Coding Unit (CU) size and more prediction modes. However, since the encoder needs to traverse all possible choices to mine out the best way of encoding data, this large flexibility on block size and prediction modes has caused a tremendous increase in encoding time. In HEVC, intra-frame coding is an important basis, and it is widely used in all configurations. Therefore, fast algorithms are always required to alleviate the computational complexity of HEVC intra-frame coding. In this thesis, a fast intra-frame coding algorithm based on machine learning is proposed to predict CU decisions. Hence the computational complexity can be significantly reduced with negligible loss in the coding efficiency. Machine learning models like Bayes decision, Support Vector Machine (SVM) are used as decision makers while the Laplacian Transparent Composite Model (LPTCM) is selected as a feature extraction tool. In the main version of the proposed algorithm, a set of features named with Summation of Binarized Outlier Coefficients (SBOC) is extracted to train SVM models. An online training structure and a performance control method are introduced to enhance the robustness of decision makers. When applied on All Intra Main (AIM) full test and compared with HM 16.3, the main version of the proposed algorithm can achieve, on average, 48% time reduction with 0.78% BD-rate increase. Through adjusting parameter settings, the algorithm can change the trade-off between encoding time and coding efficiency, which can generate a performance curve to meet different requirements. By testing different methods on the same machine, the performance of proposed method has outperformed all CU decision based HEVC fast intra-frame algorithms in the benchmarks

    Fast Intra-frame Coding Algorithm for HEVC Based on TCM and Machine Learning

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard. Compared with the previous standard H.264/AVC, it can reduce the bit-rate by around 50% while maintaining the same perceptual quality. This performance gain on compression is achieved mainly by supporting larger Coding Unit (CU) size and more prediction modes. However, since the encoder needs to traverse all possible choices to mine out the best way of encoding data, this large flexibility on block size and prediction modes has caused a tremendous increase in encoding time. In HEVC, intra-frame coding is an important basis, and it is widely used in all configurations. Therefore, fast algorithms are always required to alleviate the computational complexity of HEVC intra-frame coding. In this thesis, a fast intra-frame coding algorithm based on machine learning is proposed to predict CU decisions. Hence the computational complexity can be significantly reduced with negligible loss in the coding efficiency. Machine learning models like Bayes decision, Support Vector Machine (SVM) are used as decision makers while the Laplacian Transparent Composite Model (LPTCM) is selected as a feature extraction tool. In the main version of the proposed algorithm, a set of features named with Summation of Binarized Outlier Coefficients (SBOC) is extracted to train SVM models. An online training structure and a performance control method are introduced to enhance the robustness of decision makers. When applied on All Intra Main (AIM) full test and compared with HM 16.3, the main version of the proposed algorithm can achieve, on average, 48% time reduction with 0.78% BD-rate increase. Through adjusting parameter settings, the algorithm can change the trade-off between encoding time and coding efficiency, which can generate a performance curve to meet different requirements. By testing different methods on the same machine, the performance of proposed method has outperformed all CU decision based HEVC fast intra-frame algorithms in the benchmarks

    Efficient coding unit size selection based on texture analysis for HEVC intra prediction

    Get PDF
    Determining the best partitioning structure for a given Coding Tree Unit (CTU) is one of the most time consuming operations within the HEVC encoder. The brute force search through quadtree hierarchy has a significant impact on the encoding time of high definition (HD) videos. This paper presents a fast coding unit size decision-taking algorithm for intra prediction in HEVC. The proposed algorithm utilizes a low complex texture analysis technique based on the local range property of a pixel in a given neighborhood. Simulation results show that the proposed algorithm achieves an average of 72.24% encoding time efficiency improvement with similar rate distortion performance compared to HEVC reference software HM12.0 for HD videos

    Complexity Analysis Of Next-Generation VVC Encoding and Decoding

    Full text link
    While the next generation video compression standard, Versatile Video Coding (VVC), provides a superior compression efficiency, its computational complexity dramatically increases. This paper thoroughly analyzes this complexity for both encoder and decoder of VVC Test Model 6, by quantifying the complexity break-down for each coding tool and measuring the complexity and memory requirements for VVC encoding/decoding. These extensive analyses are performed for six video sequences of 720p, 1080p, and 2160p, under Low-Delay (LD), Random-Access (RA), and All-Intra (AI) conditions (a total of 320 encoding/decoding). Results indicate that the VVC encoder and decoder are 5x and 1.5x more complex compared to HEVC in LD, and 31x and 1.8x in AI, respectively. Detailed analysis of coding tools reveals that in LD on average, motion estimation tools with 53%, transformation and quantization with 22%, and entropy coding with 7% dominate the encoding complexity. In decoding, loop filters with 30%, motion compensation with 20%, and entropy decoding with 16%, are the most complex modules. Moreover, the required memory bandwidth for VVC encoding/decoding are measured through memory profiling, which are 30x and 3x of HEVC. The reported results and insights are a guide for future research and implementations of energy-efficient VVC encoder/decoder.Comment: IEEE ICIP 202
    corecore