2,146 research outputs found

    Positive Semidefinite Metric Learning Using Boosting-like Algorithms

    Get PDF
    The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the constraint that the matrix parameter to the metric remains positive definite. Semidefinite programming is often used to enforce this constraint, but does not scale well and easy to implement. BoostMetric is instead based on the observation that any positive semidefinite matrix can be decomposed into a linear combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting methods are easy to implement, efficient, and can accommodate various types of constraints. We extend traditional boosting algorithms in that its weak learner is a positive semidefinite matrix with trace and rank being one rather than a classifier or regressor. Experiments on various datasets demonstrate that the proposed algorithms compare favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 30 pages, appearing in Journal of Machine Learning Researc

    WATCHING PEOPLE: ALGORITHMS TO STUDY HUMAN MOTION AND ACTIVITIES

    Get PDF
    Nowadays human motion analysis is one of the most active research topics in Computer Vision and it is receiving an increasing attention from both the industrial and scientific communities. The growing interest in human motion analysis is motivated by the increasing number of promising applications, ranging from surveillance, human–computer interaction, virtual reality to healthcare, sports, computer games and video conferencing, just to name a few. The aim of this thesis is to give an overview of the various tasks involved in visual motion analysis of the human body and to present the issues and possible solutions related to it. In this thesis, visual motion analysis is categorized into three major areas related to the interpretation of human motion: tracking of human motion using virtual pan-tilt-zoom (vPTZ) camera, recognition of human motions and human behaviors segmentation. In the field of human motion tracking, a virtual environment for PTZ cameras (vPTZ) is presented to overcame the mechanical limitations of PTZ cameras. The vPTZ is built on equirectangular images acquired by 360° cameras and it allows not only the development of pedestrian tracking algorithms but also the comparison of their performances. On the basis of this virtual environment, three novel pedestrian tracking algorithms for 360° cameras were developed, two of which adopt a tracking-by-detection approach while the last adopts a Bayesian approach. The action recognition problem is addressed by an algorithm that represents actions in terms of multinomial distributions of frequent sequential patterns of different length. Frequent sequential patterns are series of data descriptors that occur many times in the data. The proposed method learns a codebook of frequent sequential patterns by means of an apriori-like algorithm. An action is then represented with a Bag-of-Frequent-Sequential-Patterns approach. In the last part of this thesis a methodology to semi-automatically annotate behavioral data given a small set of manually annotated data is presented. The resulting methodology is not only effective in the semi-automated annotation task but can also be used in presence of abnormal behaviors, as demonstrated empirically by testing the system on data collected from children affected by neuro-developmental disorders

    Online Product Quantization

    Full text link
    Approximate nearest neighbor (ANN) search has achieved great success in many tasks. However, existing popular methods for ANN search, such as hashing and quantization methods, are designed for static databases only. They cannot handle well the database with data distribution evolving dynamically, due to the high computational effort for retraining the model based on the new database. In this paper, we address the problem by developing an online product quantization (online PQ) model and incrementally updating the quantization codebook that accommodates to the incoming streaming data. Moreover, to further alleviate the issue of large scale computation for the online PQ update, we design two budget constraints for the model to update partial PQ codebook instead of all. We derive a loss bound which guarantees the performance of our online PQ model. Furthermore, we develop an online PQ model over a sliding window with both data insertion and deletion supported, to reflect the real-time behaviour of the data. The experiments demonstrate that our online PQ model is both time-efficient and effective for ANN search in dynamic large scale databases compared with baseline methods and the idea of partial PQ codebook update further reduces the update cost.Comment: To appear in IEEE Transactions on Knowledge and Data Engineering (DOI: 10.1109/TKDE.2018.2817526

    PolyFormer: Referring Image Segmentation as Sequential Polygon Generation

    Full text link
    In this work, instead of directly predicting the pixel-level segmentation masks, the problem of referring image segmentation is formulated as sequential polygon generation, and the predicted polygons can be later converted into segmentation masks. This is enabled by a new sequence-to-sequence framework, Polygon Transformer (PolyFormer), which takes a sequence of image patches and text query tokens as input, and outputs a sequence of polygon vertices autoregressively. For more accurate geometric localization, we propose a regression-based decoder, which predicts the precise floating-point coordinates directly, without any coordinate quantization error. In the experiments, PolyFormer outperforms the prior art by a clear margin, e.g., 5.40% and 4.52% absolute improvements on the challenging RefCOCO+ and RefCOCOg datasets. It also shows strong generalization ability when evaluated on the referring video segmentation task without fine-tuning, e.g., achieving competitive 61.5% J&F on the Ref-DAVIS17 dataset
    • …
    corecore