4 research outputs found

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications

    Low-Complexity and Hardware-Friendly H.265/HEVC Encoder for Vehicular Ad-Hoc Networks

    Get PDF
    Real-time video streaming over vehicular ad-hoc networks (VANETs) has been considered as a critical challenge for road safety applications. The purpose of this paper is to reduce the computation complexity of high efficiency video coding (HEVC) encoder for VANETs. Based on a novel spatiotemporal neighborhood set, firstly the coding tree unit depth decision algorithm is presented by controlling the depth search range. Secondly, a Bayesian classifier is used for the prediction unit decision for inter-prediction, and prior probability value is calculated by Gibbs Random Field model. Simulation results show that the overall algorithm can significantly reduce encoding time with a reasonably low loss in encoding efficiency. Compared to HEVC reference software HM16.0, the encoding time is reduced by up to 63.96%, while the Bjontegaard delta bit-rate is increased by only 0.76–0.80% on average. Moreover, the proposed HEVC encoder is low-complexity and hardware-friendly for video codecs that reside on mobile vehicles for VANETs

    Moving object detection for automobiles by the shared use of H.264/AVC motion vectors : innovation report.

    Get PDF
    Cost is one of the problems for wider adoption of Advanced Driver Assistance Systems (ADAS) in China. The objective of this research project is to develop a low-cost ADAS by the shared use of motion vectors (MVs) from a H.264/AVC video encoder that was originally designed for video recording only. There were few studies on the use of MVs from video encoders on a moving platform for moving object detection. The main contribution of this research is the novel algorithm proposed to address the problems of moving object detection when MVs from a H.264/AVC encoder are used. It is suitable for mass-produced in-vehicle devices as it combines with MV based moving object detection in order to reduce the cost and complexity of the system, and provides the recording function by default without extra cost. The estimated cost of the proposed system is 50% lower than that making use of the optical flow approach. To reduce the area of region of interest and to account for the real-time computation requirement, a new block based region growth algorithm is used for the road region detection. To account for the small amplitude and limited precision of H.264/AVC MVs on relatively slow moving objects, the detection task separates the region of interest into relatively fast and relatively slow speed regions by examining the amplitude of MVs, the position of focus of expansion and the result of road region detection. Relatively slow moving objects are detected and tracked by the use of generic horizontal and vertical contours of rear-view vehicles. This method has addressed the problem of H.264/AVC encoders that possess limited precision and erroneous motion vectors for relatively slow moving objects and regions near the focus of expansion. Relatively fast moving objects are detected by a two-stage approach. It includes a Hypothesis Generation (HG) and a Hypothesis Verification (HV) stage. This approach addresses the problem that the H.264/AVC MVs are generated for coding efficiency rather than for minimising motion error of objects. The HG stage will report a potential moving object based on clustering the planar parallax residuals satisfying the constraints set out in the algorithm. The HV will verify the existence of the moving object based on the temporal consistency of its displacement in successive frames. The test results show that the vehicle detection rate higher than 90% which is on a par to methods proposed by other authors, and the computation cost is low enough to achieve the real-time performance requirement. An invention patent, one international journal paper and two international conference papers have been either published or accepted, showing the originality of the work in this project. One international journal paper is also under preparation

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches
    corecore