250 research outputs found

    Crack detection in paintings using convolutional neural networks

    Get PDF
    The accurate detection of cracks in paintings, which generally portray rich and varying content, is a challenging task. Traditional crack detection methods are often lacking on recent acquisitions of paintings as they are poorly adapted to high-resolutions and do not make use of the other imaging modalities often at hand. Furthermore, many paintings portray a complex or cluttered composition, significantly complicating a precise detection of cracks when using only photographic material. In this paper, we propose a fast crack detection algorithm based on deep convolutional neural networks (CNN) that is capable of combining several imaging modalities, such as regular photographs, infrared photography and X-Ray images. Moreover, we propose an efficient solution to improve the CNN-based localization of the actual crack boundaries and extend the CNN architecture such that areas where it makes little sense to run expensive learning models are ignored. This allows us to process large resolution scans of paintings more efficiently. The proposed on-line method is capable of continuously learning from newly acquired visual data, thus further improving classification results as more data becomes available. A case study on multimodal acquisitions of the Ghent Altarpiece, taken during the currently ongoing conservation-restoration treatment, shows improvements over the state-of-the-art in crack detection methods and demonstrates the potential of our proposed method in assisting art conservators

    Image processing using the Walsh transform.

    Get PDF
    This thesis presents a new algorithm which can be used to register images of the same or different modalities e.g images with multiple channels such as X-rays, temperature, or elevation or simply images of different spectral bands. In particular, a correlation-based scheme is used, but instead of grey values, it correlates numbers formulated by different combinations of the extracted local Walsh coefficients of the images. Each image patch is expanded in terms of Walsh basis functions. Each Walsh basis function can be thought of as measuring a different aspect of local structure, eg horizontal edge, corner, etc. The coefficients of the expansion, therefore, can be thought of as dense local features, estimating at each point the degree of presence of, for example, a horizontal edge, a corner with contrast of a certain type, etc. These coefficients are normalised and used as digits in a chosen number system which allows one to create a unique number for each type of local structure. The choice of the basis of the number system allows one to give different emphasis to different types of local feature (e.g. corners versus edges) and thus the method we present forms a unified framework in terms of which several feature matching methods may be interpreted. The algorithm is compared with wavelet based approaches, using simulated and real images. The images used for the registration experiments are assumed to differ from each other by a rotation and a translation only. Additionally, the method was extended to cope with 3D image sets, while as an add-on, it was also tried in performing image segmentation

    Adaptive visual sampling

    Get PDF
    PhDVarious visual tasks may be analysed in the context of sampling from the visual field. In visual psychophysics, human visual sampling strategies have often been shown at a high-level to be driven by various information and resource related factors such as the limited capacity of the human cognitive system, the quality of information gathered, its relevance in context and the associated efficiency of recovering it. At a lower-level, we interpret many computer vision tasks to be rooted in similar notions of contextually-relevant, dynamic sampling strategies which are geared towards the filtering of pixel samples to perform reliable object association. In the context of object tracking, the reliability of such endeavours is fundamentally rooted in the continuing relevance of object models used for such filtering, a requirement complicated by realworld conditions such as dynamic lighting that inconveniently and frequently cause their rapid obsolescence. In the context of recognition, performance can be hindered by the lack of learned context-dependent strategies that satisfactorily filter out samples that are irrelevant or blunt the potency of models used for discrimination. In this thesis we interpret the problems of visual tracking and recognition in terms of dynamic spatial and featural sampling strategies and, in this vein, present three frameworks that build on previous methods to provide a more flexible and effective approach. Firstly, we propose an adaptive spatial sampling strategy framework to maintain statistical object models for real-time robust tracking under changing lighting conditions. We employ colour features in experiments to demonstrate its effectiveness. The framework consists of five parts: (a) Gaussian mixture models for semi-parametric modelling of the colour distributions of multicolour objects; (b) a constructive algorithm that uses cross-validation for automatically determining the number of components for a Gaussian mixture given a sample set of object colours; (c) a sampling strategy for performing fast tracking using colour models; (d) a Bayesian formulation enabling models of object and the environment to be employed together in filtering samples by discrimination; and (e) a selectively-adaptive mechanism to enable colour models to cope with changing conditions and permit more robust tracking. Secondly, we extend the concept to an adaptive spatial and featural sampling strategy to deal with very difficult conditions such as small target objects in cluttered environments undergoing severe lighting fluctuations and extreme occlusions. This builds on previous work on dynamic feature selection during tracking by reducing redundancy in features selected at each stage as well as more naturally balancing short-term and long-term evidence, the latter to facilitate model rigidity under sharp, temporary changes such as occlusion whilst permitting model flexibility under slower, long-term changes such as varying lighting conditions. This framework consists of two parts: (a) Attribute-based Feature Ranking (AFR) which combines two attribute measures; discriminability and independence to other features; and (b) Multiple Selectively-adaptive Feature Models (MSFM) which involves maintaining a dynamic feature reference of target object appearance. We call this framework Adaptive Multi-feature Association (AMA). Finally, we present an adaptive spatial and featural sampling strategy that extends established Local Binary Pattern (LBP) methods and overcomes many severe limitations of the traditional approach such as limited spatial support, restricted sample sets and ad hoc joint and disjoint statistical distributions that may fail to capture important structure. Our framework enables more compact, descriptive LBP type models to be constructed which may be employed in conjunction with many existing LBP techniques to improve their performance without modification. The framework consists of two parts: (a) a new LBP-type model known as Multiscale Selected Local Binary Features (MSLBF); and (b) a novel binary feature selection algorithm called Binary Histogram Intersection Minimisation (BHIM) which is shown to be more powerful than established methods used for binary feature selection such as Conditional Mutual Information Maximisation (CMIM) and AdaBoost

    HRFuser: A Multi-resolution Sensor Fusion Architecture for 2D Object Detection

    Get PDF
    Besides standard cameras, autonomous vehicles typically include multipleadditional sensors, such as lidars and radars, which help acquire richerinformation for perceiving the content of the driving scene. While severalrecent works focus on fusing certain pairs of sensors - such as camera andlidar or camera and radar - by using architectural components specific to theexamined setting, a generic and modular sensor fusion architecture is missingfrom the literature. In this work, we focus on 2D object detection, afundamental high-level task which is defined on the 2D image domain, andpropose HRFuser, a multi-resolution sensor fusion architecture that scalesstraightforwardly to an arbitrary number of input modalities. The design ofHRFuser is based on state-of-the-art high-resolution networks for image-onlydense prediction and incorporates a novel multi-window cross-attention block asthe means to perform fusion of multiple modalities at multiple resolutions.Even though cameras alone provide very informative features for 2D detection,we demonstrate via extensive experiments on the nuScenes and Seeing Through Fogdatasets that our model effectively leverages complementary features fromadditional modalities, substantially improving upon camera-only performance andconsistently outperforming state-of-the-art fusion methods for 2D detectionboth in normal and adverse conditions. The source code will be made publiclyavailable.<br

    IMPROVING EFFICIENCY AND SCALABILITY IN VISUAL SURVEILLANCE APPLICATIONS

    Get PDF
    We present four contributions to visual surveillance: (a) an action recognition method based on the characteristics of human motion in image space; (b) a study of the strengths of five regression techniques for monocular pose estimation that highlights the advantages of kernel PLS; (c) a learning-based method for detecting objects carried by humans requiring minimal annotation; (d) an interactive video segmentation system that reduces supervision by using occlusion and long term spatio-temporal structure information. We propose a representation for human actions that is based solely on motion information and that leverages the characteristics of human movement in the image space. The representation is best suited to visual surveillance settings in which the actions of interest are highly constrained, but also works on more general problems if the actions are ballistic in nature. Our computationally efficient representation achieves good recognition performance on both a commonly used action recognition dataset and on a dataset we collected to simulate a checkout counter. We study discriminative methods for 3D human pose estimation from single images, which build a map from image features to pose. The main difficulty with these methods is the insufficiency of training data due to the high dimensionality of the pose space. However, real datasets can be augmented with data from character animation software, so the scalability of existing approaches becomes important. We argue that Kernel Partial Least Squares approximates Gaussian Process regression robustly, enabling the use of larger datasets, and we show in experiments that kPLS outperforms two state-of-the-art methods based on GP. The high variability in the appearance of carried objects suggests using their relation to the human silhouette to detect them. We adopt a generate-and-test approach that produces candidate regions from protrusion, color contrast and occlusion boundary cues and then filters them with a kernel SVM classifier on context features. Our method exceeds state of the art accuracy and has good generalization capability. We also propose a Multiple Instance Learning framework for the classifier that reduces annotation effort by two orders of magnitude while maintaining comparable accuracy. Finally, we present an interactive video segmentation system that trades off a small amount of segmentation quality for significantly less supervision than necessary in systems in the literature. While applications like video editing could not directly use the output of our system, reasoning about the trajectories of objects in a scene or learning coarse appearance models is still possible. The unsupervised segmentation component at the base of our system effectively employs occlusion boundary cues and achieves competitive results on an unsupervised segmentation dataset. On videos used to evaluate interactive methods, our system requires less interaction time than others, does not rely on appearance information and can extract multiple objects at the same time
    corecore