7 research outputs found

    Design and analysis of robust controllers for directional drilling tools

    Get PDF
    Directional drilling is a very important tool for the development of oil and gas deposits. Attitude control which enables directional drilling for the efficient placement of the directional drilling tools in petroleum producing zones is reviewed along with the various engineering requirements or constraints. This thesis explores a multivariable attitude governing plant model as formulated in Panchal et al. (2010) which is used for developing robust control techniques. An inherent input and measurement delay which accounts for the plant's dead-time is included in the design of the controllers. A Smith Predictor controller is developed for reducing the effect of this dead-time. The developed controllers are compared for performance and robustness using structured singular value analysis and also for their performance indicated by the transient response of the closed loop models. Results for the transient non-linear simulation of the proposed controllers are also presented. The results obtained indicate that the objectives are satisfactorily achieved

    On-line estimation approaches to fault-tolerant control of uncertain systems

    Get PDF
    This thesis is concerned with fault estimation in Fault-Tolerant Control (FTC) and as such involves the joint problem of on-line estimation within an adaptive control system. The faults that are considered are significant uncertainties affecting the control variables of the process and their estimates are used in an adaptive control compensation mechanism. The approach taken involves the active FTC, as the faults can be considered as uncertainties affecting the control system. The engineering (application domain) challenges that are addressed are: (1) On-line model-based fault estimation and compensation as an FTC problem, for systems with large but bounded fault magnitudes and for which the faults can be considered as a special form of dynamic uncertainty. (2) Fault-tolerance in the distributed control of uncertain inter-connected systems The thesis also describes how challenge (1) can be used in the distributed control problem of challenge (2). The basic principle adopted throughout the work is that the controller has two components, one involving the nominal control action and the second acting as an adaptive compensation for significant uncertainties and fault effects. The fault effects are a form of uncertainty which is considered too large for the application of passive FTC methods. The thesis considers several approaches to robust control and estimation: augmented state observer (ASO); sliding mode control (SMC); sliding mode fault estimation via Sliding Mode Observer (SMO); linear parameter-varying (LPV) control; two-level distributed control with learning coordination

    A Comprehensive Review of Digital Twin -- Part 1: Modeling and Twinning Enabling Technologies

    Full text link
    As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision and policy making, and more, by comprehensively modeling the physical world as a group of interconnected digital models. In a two-part series of papers, we examine the fundamental role of different modeling techniques, twinning enabling technologies, and uncertainty quantification and optimization methods commonly used in digital twins. This first paper presents a thorough literature review of digital twin trends across many disciplines currently pursuing this area of research. Then, digital twin modeling and twinning enabling technologies are further analyzed by classifying them into two main categories: physical-to-virtual, and virtual-to-physical, based on the direction in which data flows. Finally, this paper provides perspectives on the trajectory of digital twin technology over the next decade, and introduces a few emerging areas of research which will likely be of great use in future digital twin research. In part two of this review, the role of uncertainty quantification and optimization are discussed, a battery digital twin is demonstrated, and more perspectives on the future of digital twin are shared

    Summary of Research 1994

    Get PDF
    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government.This report contains 359 summaries of research projects which were carried out under funding of the Naval Postgraduate School Research Program. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, and technical reports. The research was conducted in the areas of Aeronautics and Astronautics, Computer Science, Electrical and Computer Engineering, Mathematics, Mechanical Engineering, Meteorology, National Security Affairs, Oceanography, Operations Research, Physics, and Systems Management. This also includes research by the Command, Control and Communications (C3) Academic Group, Electronic Warfare Academic Group, Space Systems Academic Group, and the Undersea Warfare Academic Group

    Six Decades of Flight Research: An Annotated Bibliography of Technical Publications of NASA Dryden Flight Research Center, 1946-2006

    Get PDF
    Titles, authors, report numbers, and abstracts are given for nearly 2900 unclassified and unrestricted technical reports and papers published from September 1946 to December 2006 by the NASA Dryden Flight Research Center and its predecessor organizations. These technical reports and papers describe and give the results of 60 years of flight research performed by the NACA and NASA, from the X-1 and other early X-airplanes, to the X-15, Space Shuttle, X-29 Forward Swept Wing, X-31, and X-43 aircraft. Some of the other research airplanes tested were the D-558, phase 1 and 2; M-2, HL-10 and X-24 lifting bodies; Digital Fly-By-Wire and Supercritical Wing F-8; XB-70; YF-12; AFTI F-111 TACT and MAW; F-15 HiDEC; F-18 High Alpha Research Vehicle, F-18 Systems Research Aircraft and the NASA Landing Systems Research aircraft. The citations of reports and papers are listed in chronological order, with author and aircraft indices. In addition, in the appendices, citations of 270 contractor reports, more than 200 UCLA Flight System Research Center reports, nearly 200 Tech Briefs, 30 Dryden Historical Publications, and over 30 videotapes are included
    corecore