14,528 research outputs found

    Fast Approximation and Exact Computation of Negative Curvature Parameters of Graphs

    Get PDF
    In this paper, we study Gromov hyperbolicity and related parameters, that represent how close (locally) a metric space is to a tree from a metric point of view. The study of Gromov hyperbolicity for geodesic metric spaces can be reduced to the study of graph hyperbolicity. Our main contribution in this note is a new characterization of hyperbolicity for graphs (and for complete geodesic metric spaces). This characterization has algorithmic implications in the field of large-scale network analysis, which was one of our initial motivations. A sharp estimate of graph hyperbolicity is useful, {e.g.}, in embedding an undirected graph into hyperbolic space with minimum distortion [Verbeek and Suri, SoCG\u2714]. The hyperbolicity of a graph can be computed in polynomial-time, however it is unlikely that it can be done in subcubic time. This makes this parameter difficult to compute or to approximate on large graphs. Using our new characterization of graph hyperbolicity, we provide a simple factor 8 approximation algorithm for computing the hyperbolicity of an n-vertex graph G=(V,E) in optimal time O(n^2) (assuming that the input is the distance matrix of the graph). This algorithm leads to constant factor approximations of other graph-parameters related to hyperbolicity (thinness, slimness, and insize). We also present the first efficient algorithms for exact computation of these parameters. All of our algorithms can be used to approximate the hyperbolicity of a geodesic metric space

    Fast approximation and exact computation of negative curvature parameters of graphs

    Full text link
    In this paper, we study Gromov hyperbolicity and related parameters, that represent how close (locally) a metric space is to a tree from a metric point of view. The study of Gromov hyperbolicity for geodesic metric spaces can be reduced to the study of graph hyperbolicity. The main contribution of this paper is a new characterization of the hyperbolicity of graphs. This characterization has algorithmic implications in the field of large-scale network analysis. A sharp estimate of graph hyperbolicity is useful, e.g., in embedding an undirected graph into hyperbolic space with minimum distortion [Verbeek and Suri, SoCG'14]. The hyperbolicity of a graph can be computed in polynomial-time, however it is unlikely that it can be done in subcubic time. This makes this parameter difficult to compute or to approximate on large graphs. Using our new characterization of graph hyperbolicity, we provide a simple factor 8 approximation algorithm for computing the hyperbolicity of an nn-vertex graph G=(V,E)G=(V,E) in optimal time O(n2)O(n^2) (assuming that the input is the distance matrix of the graph). This algorithm leads to constant factor approximations of other graph-parameters related to hyperbolicity (thinness, slimness, and insize). We also present the first efficient algorithms for exact computation of these parameters. All of our algorithms can be used to approximate the hyperbolicity of a geodesic metric space. We also show that a similar characterization of hyperbolicity holds for all geodesic metric spaces endowed with a geodesic spanning tree. Along the way, we prove that any complete geodesic metric space (X,d)(X,d) has such a geodesic spanning tree. We hope that this fundamental result can be useful in other contexts

    Bayesian model selection for exponential random graph models via adjusted pseudolikelihoods

    Get PDF
    Models with intractable likelihood functions arise in areas including network analysis and spatial statistics, especially those involving Gibbs random fields. Posterior parameter es timation in these settings is termed a doubly-intractable problem because both the likelihood function and the posterior distribution are intractable. The comparison of Bayesian models is often based on the statistical evidence, the integral of the un-normalised posterior distribution over the model parameters which is rarely available in closed form. For doubly-intractable models, estimating the evidence adds another layer of difficulty. Consequently, the selection of the model that best describes an observed network among a collection of exponential random graph models for network analysis is a daunting task. Pseudolikelihoods offer a tractable approximation to the likelihood but should be treated with caution because they can lead to an unreasonable inference. This paper specifies a method to adjust pseudolikelihoods in order to obtain a reasonable, yet tractable, approximation to the likelihood. This allows implementation of widely used computational methods for evidence estimation and pursuit of Bayesian model selection of exponential random graph models for the analysis of social networks. Empirical comparisons to existing methods show that our procedure yields similar evidence estimates, but at a lower computational cost.Comment: Supplementary material attached. To view attachments, please download and extract the gzzipped source file listed under "Other formats

    Fast approximation of centrality and distances in hyperbolic graphs

    Full text link
    We show that the eccentricities (and thus the centrality indices) of all vertices of a δ\delta-hyperbolic graph G=(V,E)G=(V,E) can be computed in linear time with an additive one-sided error of at most cδc\delta, i.e., after a linear time preprocessing, for every vertex vv of GG one can compute in O(1)O(1) time an estimate e^(v)\hat{e}(v) of its eccentricity eccG(v)ecc_G(v) such that eccG(v)e^(v)eccG(v)+cδecc_G(v)\leq \hat{e}(v)\leq ecc_G(v)+ c\delta for a small constant cc. We prove that every δ\delta-hyperbolic graph GG has a shortest path tree, constructible in linear time, such that for every vertex vv of GG, eccG(v)eccT(v)eccG(v)+cδecc_G(v)\leq ecc_T(v)\leq ecc_G(v)+ c\delta. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of GG, the smaller its eccentricity is. We also show that the distance matrix of GG with an additive one-sided error of at most cδc'\delta can be computed in O(V2log2V)O(|V|^2\log^2|V|) time, where c<cc'< c is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation
    corecore