1,732 research outputs found

    A stochastic programming approach for chemotherapy appointment scheduling

    Get PDF
    Chemotherapy appointment scheduling is a challenging problem due to the uncertainty in pre-medication and infusion durations. In this paper, we formulate a two-stage stochastic mixed integer programming model for the chemotherapy appointment scheduling problem under limited availability and number of nurses and infusion chairs. The objective is to minimize the expected weighted sum of nurse overtime, chair idle time, and patient waiting time. The computational burden to solve real-life instances of this problem to optimality is significantly high, even in the deterministic case. To overcome this burden, we incorporate valid bounds and symmetry breaking constraints. Progressive hedging algorithm is implemented in order to solve the improved formulation heuristically. We enhance the algorithm through a penalty update method, cycle detection and variable fixing mechanisms, and a linear approximation of the objective function. Using numerical experiments based on real data from a major oncology hospital, we compare our solution approach with several scheduling heuristics from the relevant literature, generate managerial insights related to the impact of the number of nurses and chairs on appointment schedules, and estimate the value of stochastic solution to assess the significance of considering uncertainty

    Performance analysis and scheduling strategies for ambulatory surgical facilities

    Get PDF
    Ambulatory surgery is a procedure that does not require an overnight hospital stay and is cost effective and efficient. The goal of this research is to develop an ASF operational model which allows management to make key decisions. This research develops and utilizes the simulation software ARENA based model to accommodate: (a) Time related uncertainties – Three system uncertainties characterize the problem (ii) Surgery time variance (ii) Physician arrival delay and (iii) Patient arrival delay; (b) Resource Capture Complexities – Patient flows vary significantly and capture/utilize both staffing and/or physical resources at different points and varying levels; and (c) Processing Time Differences – Patient care activities and surgical operation times vary by type and have a high level of variance between patient acuity within the same surgery type. A multi-dimensional ASF non-clinical performance objective is formulated and includes: (i) Fixed Labor Costs – regular time staffing costs for two nurse groups and medical/tech assistants, (i i) Overtime Labor Costs – staffing costs beyond the regular schedule, (i i i) Patient Delay Penalty – Imputed costs of waiting time experienced patients, and (iv) Physician Delay Penalty – Imputed costs of physicians having to delay surgical procedures due to ASF causes (limited staffing, patient delays, blocked OR, etc.). Three ASF decision problems are studied: (i) Optimize Staffing Resources Levels - Variations in staffing levels though are inversely related to patient waiting times and physician delays. The decision variable is the number of staff for three resource groups, for a given physician assignment and surgery profile. The results show that the decision space is convex, but decision robustness varies by problem type. For the problems studied the optimal levels provided 9% to 28% improvements relative to the baseline staffing level. The convergence rate is highest for less than optimal levels of Nurse-A. The problem is thus amenable to a gradient based search. (ii) Physician Block Assignment - The decision variables are the block assignments and the patient arrivals by type in each block. Five block assignment heuristics are developed and evaluated. Heuristic #4 which utilizes robust activity estimates (75% likelihood) and generates an asymmetrical resource utilization schedule, is found to be statistically better or equivalent to all other heuristics for 9 out of the 10 problems and (iii) Patient Arrival Schedule – Three decision variables in the patient arrival control (a) Arrival time of first patient in a block (b) The distribution and sequence of patients for each surgery type within the assigned windows and (c) The inter arrival time between patients, which could be constant or varying. Seven scheduling heuristics were developed and tested. Two heuristics one based on Palmers Rule and the other based on the SPT (Shortest Processing Time) Rule gave very strong results

    Access and Resource Management for Clinical Care and Clinical Research in Multi-class Stochastic Queueing Networks.

    Full text link
    In healthcare delivery systems, proper coordination between patient visits and the health care resources they rely upon is an area in which important new planning capabilities are very valuable to provide greater value to all stakeholders. Managing supply and demand, while providing an appropriate service level for various types of care and patients of differing levels of urgency is a difficult task to achieve. This task becomes even more complex when planning for (i) stochastic demand, (ii) multi-class customers (i.e., patients with different urgency levels), and (iii) multiple services/visit types (which includes multi-visit itineraries of clinical care and/or clinical research visits that are delivered according to research protocols). These complications in the demand stream require service waiting times and itineraries of visits that may span multiple days/weeks and may utilize many different resources in the organization (each resource with at least one specific service being provided). The key objective of this dissertation is to develop planning models for the optimization of capacity allocation while considering the coordination between resources and patient demand in these multi-class stochastic queueing networks in order to meet the service/access levels required for each patient class. This control can be managed by allocating resources to specific patient types/visits over a planning horizon. In this dissertation, we control key performance metrics that relate to patient access management and resource capacity planning in various healthcare settings with chapters devoted to outpatient services, and clinical research units. The methods developed forecast and optimize (1) the access to care (in a medical specialty) for each patient class, (2) the Time to First Available Visit for clinical research participants enrolling in clinical trials, and (3) the access to downstream resources in an itinerary of care, which we call the itinerary flow time. We also model and control how resources are managed, by incorporating (4) workload/utilization metrics, as well as (5) blocking/overtime probabilities of those resources. We control how to allocate resource capacity along the various multi-visit resource requirements of the patient itineraries, and by doing so, we capture the key correlations between patient access, and resource allocation, coordination, and utilization.PhDIndustrial and Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116770/1/jivan_1.pd

    Organizing timely treatment in multi-disciplinary care

    Get PDF
    Healthcare providers experience an increased pressure to organize their processes more efficiently and to provide coordinated care over multiple disciplines. Organizing multi-disciplinary care is typically highly constrained, since multiple appointments per patient have to be scheduled with possible restrictions between them. Furthermore, schedules of professionals from various facilities or with different skills must be aligned. Since it is important that patients are treated on time, access time targets are set on the time between referral to the facility and the actual start of the treatment. These targets may vary per patient type: e.g., urgent patients have shorter access time targets than regular patients. In this thesis, we use operations research methods to support multi-disciplinary care settings in providing timely treatments with an excellent quality of care, against affordable costs, while taking patient and employee satisfaction into account. We consider settings in rehabilitation care and radiotherapy, but the underlying planning problems are applicable to many other multi-disciplinary care settings, such as cancer care or specialty clinics. The developed models are applied to case studies in the Sint Maartenskliniek Nijmegen, the AMC Amsterdam and a BCCA cancer clinic in Vancouver, Canada. The results of the thesis demonstrate that adequate admission policies and capacity allocation to different activities and stages in complex treatment processes can improve compliance with access time targets for multi-disciplinary care systems considerably, while using the available resource capacities and taking patient and employee satisfaction into account

    Integrated Machine Learning and Optimization Frameworks with Applications in Operations Management

    Full text link
    Incorporation of contextual inference in the optimality analysis of operational problems is a canonical characteristic of data-informed decision making that requires interdisciplinary research. In an attempt to achieve individualization in operations management, we design rigorous and yet practical mechanisms that boost efficiency, restrain uncertainty and elevate real-time decision making through integration of ideas from machine learning and operations research literature. In our first study, we investigate the decision of whether to admit a patient to a critical care unit which is a crucial operational problem that has significant influence on both hospital performance and patient outcomes. Hospitals currently lack a methodology to selectively admit patients to these units in a way that patient’s individual health metrics can be incorporated while considering the hospital’s operational constraints. We model the problem as a complex loss queueing network with a stochastic model of how long risk-stratified patients spend time in particular units and how they transition between units. A data-driven optimization methodology then approximates an optimal admission control policy for the network of units. While enforcing low levels of patient blocking, we optimize a monotonic dual-threshold admission policy. Our methodology captures utilization and accessibility in a network model of care pathways while supporting the personalized allocation of scarce care resources to the neediest patients. The interesting benefits of admission thresholds that vary by day of week are also examined. In the second study, we analyze the efficiency of surgical unit operations in the era of big data. The accuracy of surgical case duration predictions is a crucial element in hospital operational performance. We propose a comprehensive methodology that incorporates both structured and unstructured data to generate individualized predictions regarding the overall distribution of surgery durations. Consequently, we investigate methods to incorporate such individualized predictions into operational decision-making. We introduce novel prescriptive models to address optimization under uncertainty in the fundamental surgery appointment scheduling problem by utilizing the multi-dimensional data features available prior to the surgery. Electronic medical records systems provide detailed patient features that enable the prediction of individualized case time distributions; however, existing approaches in this context usually employ only limited, aggregate information, and do not take advantages of these detailed features. We show how the quantile regression forest, can be integrated into three common optimization formulations that capture the stochasticity in addressing this problem, including stochastic optimization, robust optimization and distributionally robust optimization. In the last part of this dissertation, we provide the first study on online learning problems under stochastic constraints that are "soft", i.e., need to be satisfied with high likelihood. Under a Bayesian framework, we propose and analyze a scheme that provides statistical feasibility guarantees throughout the learning horizon, by using posterior Monte Carlo samples to form sampled constraints that generalize the scenario generation approach commonly used in chance-constrained programming. We demonstrate how our scheme can be integrated into Thompson sampling and illustrate it with an application in online advertisement.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145936/1/meisami_1.pd

    Scheduling of Physicians to Minimize Patients’ Waiting Time

    Get PDF
    RÉSUMÉ : Chaque phase du processus de soins en radiothĂ©rapie se compose de plusieurs Ă©tapes. Le patient est d’abord rĂ©fĂ©rĂ© au centre de radiothĂ©rapie. AprĂšs une consultation avec le mĂ©decin, un scan permettra de dĂ©limiter les contours de la tumeur Ă  soigner afin d’établir le plan de traitement. Les doses sont calculĂ©es par des dosimĂ©tristes et ensuite validĂ©es par le mĂ©decin. La phase de prĂ©traitement commence donc par la consultation avec le mĂ©decin et se termine lorsque le traitement en tant que tel peut commencer. Dans cette Ă©tude, notre objectif est de minimiser la durĂ©e de la phase de prĂ©traitement. Bien que plusieurs ressources (humaines et matĂ©rielles) soient impliquĂ©es dans la phase de prĂ©traitement, nous nous concentrons dans ce projet sur les mĂ©decins. En effet, Ă  chacune des Ă©tapes du prĂ©traitement le mĂ©decin est impliquĂ© et doit donner son aval avant de passer Ă  l’étape suivante. Notre objectif est de dĂ©terminer un horaire cyclique et hebdomadaire des tĂąches Ă  affecter aux mĂ©decins, dans le but d’amĂ©liorer le flux des patients et de rĂ©duire la durĂ©e de la phase de prĂ©traitement des patients. Bien que cet objectif soit primordial, nous incluons la satisfaction des mĂ©decins quant au choix des tĂąches affectĂ©es chaque jour lors de l’élaboration de l’horaire. Le dĂ©fi de ce problĂšme rĂ©side dans l’incorporation d’élĂ©ments incertains (tels que l’arrivĂ©e des patients au centre de radiothĂ©rapie et leur profil). L’horaire des mĂ©decins est identique semaine aprĂšs semaine tandis que la distribution de l’arrivĂ©e des patients varie au courant de l’annĂ©e. Deux types de patients sont traitĂ©s par le centre : les patients curatifs et palliatifs. Ces patients n’ont pas le mĂȘme objectif de traitement, et surtout n’ont pas les mĂȘmes dĂ©lais d’attente. Afin de rĂ©soudre ce problĂšme nous avons dĂ©veloppĂ© une mĂ©thode de recherche Tabou basĂ©e sur trois types de mouvements. Dans un premier temps nous validons la performance de notre algorithme en nous basant sur des instances dĂ©terministes. Nous montrons qu’en moyenne, notre mĂ©thode est Ă  0.67% de la solution obtenue par CPLEX dans un temps de calcul raisonnable. Dans un deuxiĂšme temps nous incluons les paramĂštres stochastiques du problĂšme. La fonction d’évaluation du coĂ»t des mouvements dans l’algorithme tient dĂ©sormais compte du fait que l’arrivĂ©e et le profil des patients ne sont pas connus d’avance. Nous montrons que l’horaire obtenu par notre algorithme est de meilleure qualitĂ© que celui utilisĂ© en pratique sur une cinquantaine de scĂ©narios gĂ©nĂ©rĂ©s.----------ABSTRACT : Patients are interacting with many different types of healthcare resources. At the same time, new technologies in laboratories, radiology departments and surgeries have increased the number of procedures in diagnosing and curing diseases. Due to financial issues, healthcare organizations are trying to provide the best quality services with reasonable cost by improving the utilization of existing resources. The variability in demand and uncertainty in treatment as well as test duration can cause situations that some resources may not be available at the time they are required which create bottlenecks. Various factors, such as the lack of physical capacity, staff, proper scheduling method, equipment, supplies and sometimes even information, can cause bottlenecks which result in a delay for patients who are receiving the treatment. According to the Canadian Cancer Society reports, every three minutes one person is diagnosed and every seven minutes one person dies from cancer, Canadian Cancer Society (2013). Besides, long waiting times for radiotherapy treatments can cause serious effects on the treatment process. In Quebec, the waiting time for radiation oncology (the time between the patient becomes ready for the treatment and the starting day of treatment) is 4 weeks, MinistĂšre de la santĂ© et des services sociaux (2010). However, time has a major impact on the treatment process and delay in starting radiotherapy has negative effects on treatment progress. The optimal use of existing resources along with keeping the quality of treatment can be the best possible option. In cancer facilities and radiotherapy centers, the sooner the disease is recognized and the treatment is started, strengthen the chance of success in treatment. Since a patient is referred to a radiotherapy center till the start of the treatment, the patient should go through a sequence of tasks. Therefore, reducing the time for the pre-treatment phase becomes crucial, which again explains the importance of this study in making the patient ready for the treatment, thus shortening the pre-treatment phase to less than a week. The objective of this study is Determining a task schedule for physicians in a radiotherapy center. Attempts were made to find a scheme for physicians in order to minimize the pretreatment phase for patients, which would help them to start their treatment earlier by preventing physicians from being bottleneck. Satisfaction of physicians was also considered. To reach this objective, some uncertainty items such as arrival rate of patients and their profiles were considered. A meta-heuristic approach, Tabu Search algorithm, was developed and then compared with two mathematical models, one based on patterns and the other based on tasks of physicians. Due to the size of the problem and different conditions, either task-based model or patternbased one could be used. It is shown that the method developed in this project is compatible with different situations. In addition, two heuristic approaches were developed based on physicians’ tasks

    Essays On Stochastic Programming In Service Operations Management

    Get PDF
    Deterministic mathematical modeling is a branch of optimization that deals with decision making in real-world problems. While deterministic models assume that data and parameters are known, these numbers are often unknown in the real world applications.The presence of uncertainty in decision making can make the optimal solution of a deterministic model infeasible or sub-optimal. On the other hand, stochastic programming approach assumes that parameters and coefficients are unknown and only their probability distribution can be estimated. Although stochastic programming could include uncertainties in objective function and/or constraints, we only study problems that the goal of stochastic programming is to maximize (minimize) the expectation of the objective function of random variables. Stochastic programming has a wide range of application in manufacturing production planning, machine scheduling, dairy farm expansion planning, asset liability management, traffic management, and automobile dealership inventory management that involve uncertainty in decision making. One limitation of stochastic programming is that considering uncertainty in mathematical modeling often leads to a large-scale programming problem. The most widely used stochastic programming model is two-stage stochastic programming. In this model, first-stage decision variables are determined before observing the realization of uncertainties and second-stage decision variables are selected after exposing first-stage variables into the uncertainties. The goal is to determine the value of first-stage decisions in a way to maximize (minimize) the expected value of second-stage objective function. 1.1 Motivation for Designing Community-Aware Charging Network for Electric Vehicles Electric vehicles (EVs) are attracting more and more attentions these days due to increase concern about global warming and future shortage of fossil fuels. These vehicles have potential to reduce greenhouse gas emissions, improve public health condition by reducing air pollution and improving sustainability, and addressing diversication of transportation energy feedstock. Governments and policy makers have proposed two types of policy incentives in order to encourage consumers to buy an EV: direct incentives and indirect incentives. Direct incentives are those that have direct monetary value to consumers and include purchase subsidies, license tax/fee reductions, Electric Vehicle Supply Equipment (EVSE) financing, free electricity, free parking and emission test exemptions. On the other hand, indirect incentives are the ones that do not have direct monetary value and consist of high-occupancy vehicle access, emissions testing exemption time savings, and public charger availability. Lack of access to public charging network is considered to be a major barrier in adoption of EVs [38]. Access to public charging infrastructure will provide confidence for EV owners to drive longer distances without going out of charge and encourage EV ownership in the community. The current challenge for policy makers and city planners in installing public charging infrastructure is determining the location of these charging service stations, number of required stations and level of charging since the technology is still in its infancy and the installation cost is high. Since recharging of EV battery takes more time than refueling conventional vehicles, parking lots and garages are considered as potential locations for installing charging stations. The aim of this research is to develop a mathematical programming model to find the optimal locations with potentially high utilization rate for installing community-aware public EV charging infrastructure in order to improve accessibility to charging service and community livability metrics. In designing such charging network, uncertainties such as EV market share, state of battery charge at the time of arrival, driver’s willingness to charge EV away from home, arrival time to final destination, driver’s activity duration (parking duration), and driver’s walking distance preference play major role. Incorporating these uncertainties in the model, we propose a two-stage stochastic programming approach to determine the location and capacity of public EV charging network in a community. 1.2 Motivation for Managing Access to Care at Primary Care Clinics Patient access to care along with healthcare efficiency and quality of service are dimensions of health system performance measurement [1]. Improving access to primary care is a major step of having a high-performing health care system. However, many patients are struggling to get an in-time appointment with their own primary care provider (PCP). Even two years aer health insurance coverage was expanded, new patients have to wait 82% longer to get an internal-medicine appointment. A national survey shows that percentage of patients that need urgent care and could not get an appointment increased from 53% to 57% between 2006 and 2011 [30]. This delay may negatively impact health status of patients and may even lead to death. Patients that cannot get an appointment with their PCP may seek care with other providers or in emergency departments which will decrease continuity of care and increase total cost of health system. The main issue behind access problem is the imbalance between provider capacity and patient demand. While provider panel size is already large, the shortage in primary care providers and increasing number of patients mean that providers have to increase their panel size and serve more patients which will potentially lead to lower access to primary care. The ratio of adult primary care providers to population is expected to drop by 9% between 2005 and 2020 [12]. Moreover, patient flow analysis can increase efficiency of healthcare system and quality of health service by increasing patient and provider satisfaction through better resource allocation and utilization [39]. Effective resource allocation will smooth patient ow and reduce waste which will in turn results in better access to care. One way to control patient flow in clinic is managing appointment supply through appointment scheduling system. A well-designed appointment scheduling system can decrease appointment delay and waiting time in clinic for patients and idle time and/or overtime for physicians at the same time and increase their satisfaction. Appointment scheduling requires to make a balance between patient needs and facility resources [13]. The purpose of this study is to gain a better understanding for managing access to care in primary care outpatient clinics through operations management research. As a result of this under standing, we develop appointment scheduling models using two-stage stochastic programming to improve access while maintaining high levels of provider capacity utilization and improving patient flow in clinic by leveraging uncertainties in patient demand, patient no-show and provider service time variability

    Optimization of Healthcare Delivery System under Uncertainty: Schedule Elective Surgery in an Ambulatory Surgical Center and Schedule Appointment in an Outpatient Clinic

    Get PDF
    This work investigates two types of scheduling problems in the healthcare industry. One is the elective surgery scheduling problem in an ambulatory center, and the other is the appointment scheduling problem in an outpatient clinic. The ambulatory surgical center is usually equipped with an intake area, several operating rooms (ORs), and a recovery area. The set of surgeries to be scheduled are known in advance. Besides the surgery itself, the sequence-dependent setup time and the surgery recovery are also considered when making the scheduling decision. The scheduling decisions depend on the availability of the ORs, surgeons, and the recovery beds. The objective is to minimize the total cost by making decision in three aspects, number of ORs to open, surgery assignment to ORs, and surgery sequence in each OR. The problem is solved in two steps. In the first step, we propose a constraint programming model and a mixed integer programming model to solve a deterministic version of the problem. In the second step, we consider the variability of the surgery and recovery durations when making scheduling decisions and build a two stage stochastic programming model and solve it by an L-shaped algorithm. The stochastic nature of the outpatient clinic appointment scheduling system, caused by demands, patient arrivals, and service duration, makes it difficult to develop an optimal schedule policy. Once an appointment request is received, decision makers determine whether to accept the appointment and put it into a slot or reject it. Patients may cancel their scheduled appointment or simply not show up. The no-show and cancellation probability of the patients are modeled as the functions of the indirect waiting time of the patients. The performance measure is to maximize the expected net rewards, i.e., the revenue of seeing patients minus the cost of patients\u27 indirect and direct waiting as well as the physician\u27s overtime. We build a Markov Decision Process model and proposed a backward induction algorithm to obtain the optimal policy. The optimal policy is tested on random instances and compared with other heuristic policies. The backward induction algorithm and the heuristic methods are programmed in Matlab
    • 

    corecore