949 research outputs found

    Fast and Deterministic Approximations for k-Cut

    Get PDF
    In an undirected graph, a k-cut is a set of edges whose removal breaks the graph into at least k connected components. The minimum weight k-cut can be computed in n^O(k) time, but when k is treated as part of the input, computing the minimum weight k-cut is NP-Hard [Goldschmidt and Hochbaum, 1994]. For poly(m,n,k)-time algorithms, the best possible approximation factor is essentially 2 under the small set expansion hypothesis [Manurangsi, 2017]. Saran and Vazirani [1995] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed via O(k) minimum cuts, which implies a O~(km) randomized running time via the nearly linear time randomized min-cut algorithm of Karger [2000]. Nagamochi and Kamidoi [2007] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed deterministically in O(mn + n^2 log n) time. These results prompt two basic questions. The first concerns the role of randomization. Is there a deterministic algorithm for 2-approximate k-cuts matching the randomized running time of O~(km)? The second question qualitatively compares minimum cut to 2-approximate minimum k-cut. Can 2-approximate k-cuts be computed as fast as the minimum cut - in O~(m) randomized time? We give a deterministic approximation algorithm that computes (2 + eps)-minimum k-cuts in O(m log^3 n / eps^2) time, via a (1 + eps)-approximation for an LP relaxation of k-cut

    On Network Coding Capacity - Matroidal Networks and Network Capacity Regions

    Get PDF
    One fundamental problem in the field of network coding is to determine the network coding capacity of networks under various network coding schemes. In this thesis, we address the problem with two approaches: matroidal networks and capacity regions. In our matroidal approach, we prove the converse of the theorem which states that, if a network is scalar-linearly solvable then it is a matroidal network associated with a representable matroid over a finite field. As a consequence, we obtain a correspondence between scalar-linearly solvable networks and representable matroids over finite fields in the framework of matroidal networks. We prove a theorem about the scalar-linear solvability of networks and field characteristics. We provide a method for generating scalar-linearly solvable networks that are potentially different from the networks that we already know are scalar-linearly solvable. In our capacity region approach, we define a multi-dimensional object, called the network capacity region, associated with networks that is analogous to the rate regions in information theory. For the network routing capacity region, we show that the region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. For the network linear coding capacity region, we construct a computable rational polytope, with respect to a given finite field, that inner bounds the linear coding capacity region and provide exact algorithms and approximation heuristics for computing the polytope. The exact algorithms and approximation heuristics we present are not polynomial time schemes and may depend on the output size.Comment: Master of Engineering Thesis, MIT, September 2010, 70 pages, 10 figure

    Approximating Generalized Network Design under (Dis)economies of Scale with Applications to Energy Efficiency

    Full text link
    In a generalized network design (GND) problem, a set of resources are assigned to multiple communication requests. Each request contributes its weight to the resources it uses and the total load on a resource is then translated to the cost it incurs via a resource specific cost function. For example, a request may be to establish a virtual circuit, thus contributing to the load on each edge in the circuit. Motivated by energy efficiency applications, recently, there is a growing interest in GND using cost functions that exhibit (dis)economies of scale ((D)oS), namely, cost functions that appear subadditive for small loads and superadditive for larger loads. The current paper advances the existing literature on approximation algorithms for GND problems with (D)oS cost functions in various aspects: (1) we present a generic approximation framework that yields approximation results for a much wider family of requests in both directed and undirected graphs; (2) our framework allows for unrelated weights, thus providing the first non-trivial approximation for the problem of scheduling unrelated parallel machines with (D)oS cost functions; (3) our framework is fully combinatorial and runs in strongly polynomial time; (4) the family of (D)oS cost functions considered in the current paper is more general than the one considered in the existing literature, providing a more accurate abstraction for practical energy conservation scenarios; and (5) we obtain the first approximation ratio for GND with (D)oS cost functions that depends only on the parameters of the resources' technology and does not grow with the number of resources, the number of requests, or their weights. The design of our framework relies heavily on Roughgarden's smoothness toolbox (JACM 2015), thus demonstrating the possible usefulness of this toolbox in the area of approximation algorithms.Comment: 39 pages, 1 figure. An extended abstract of this paper is to appear in the 50th Annual ACM Symposium on the Theory of Computing (STOC 2018

    An Exact Algorithm for the Steiner Forest Problem

    Get PDF
    The Steiner forest problem asks for a minimum weight forest that spans a given number of terminal sets. The problem has famous linear programming based 2-approximations [Agrawal et al., 1995; Goemans and Williamson, 1995; Jain, 2001] whose bottleneck is the fact that the most natural formulation of the problem as an integer linear program (ILP) has an integrality gap of 2. We propose new cut-based ILP formulations for the problem along with exact branch-and-bound based algorithms. While our new formulations cannot improve the integrality gap, we can prove that one of them yields stronger linear programming bounds than the two previous strongest formulations: The directed cut formulation [Balakrishnan et al., 1989; Chopra and Rao, 1994] and the advanced flow-based formulation by Magnanti and Raghavan [Magnanti and Raghavan, 2005]. In an experimental evaluation, we show that the linear programming bounds of the new formulations are indeed strong on practical instances and that our new branch-and-bound algorithms outperform branch-and-bound algorithms based on the previous formulations. Our formulations can be seen as a cut-based analogon to [Magnanti and Raghavan, 2005], whose existence was an open problem

    An Exact Algorithm for the Steiner Forest Problem

    Get PDF
    The Steiner forest problem asks for a minimum weight forest that spans a given number of terminal sets. The problem has famous linear programming based 2-approximations [Agrawal et al., 1995; Goemans and Williamson, 1995; Jain, 2001] whose bottleneck is the fact that the most natural formulation of the problem as an integer linear program (ILP) has an integrality gap of 2. We propose new cut-based ILP formulations for the problem along with exact branch-and-bound based algorithms. While our new formulations cannot improve the integrality gap, we can prove that one of them yields stronger linear programming bounds than the two previous strongest formulations: The directed cut formulation [Balakrishnan et al., 1989; Chopra and Rao, 1994] and the advanced flow-based formulation by Magnanti and Raghavan [Magnanti and Raghavan, 2005]. In an experimental evaluation, we show that the linear programming bounds of the new formulations are indeed strong on practical instances and that our new branch-and-bound algorithms outperform branch-and-bound algorithms based on the previous formulations. Our formulations can be seen as a cut-based analogon to [Magnanti and Raghavan, 2005], whose existence was an open problem

    Online Directed Spanners and Steiner Forests

    Get PDF
    We present online algorithms for directed spanners and Steiner forests. These problems fall under the unifying framework of online covering linear programming formulations, developed by Buchbinder and Naor (MOR, 34, 2009), based on primal-dual techniques. Our results include the following: For the pairwise spanner problem, in which the pairs of vertices to be spanned arrive online, we present an efficient randomized O~(n4/5)\tilde{O}(n^{4/5})-competitive algorithm for graphs with general lengths, where nn is the number of vertices. With uniform lengths, we give an efficient randomized O~(n2/3+ϵ)\tilde{O}(n^{2/3+\epsilon})-competitive algorithm, and an efficient deterministic O~(k1/2+ϵ)\tilde{O}(k^{1/2+\epsilon})-competitive algorithm, where kk is the number of terminal pairs. These are the first online algorithms for directed spanners. In the offline setting, the current best approximation ratio with uniform lengths is O~(n3/5+ϵ)\tilde{O}(n^{3/5 + \epsilon}), due to Chlamtac, Dinitz, Kortsarz, and Laekhanukit (TALG 2020). For the directed Steiner forest problem with uniform costs, in which the pairs of vertices to be connected arrive online, we present an efficient randomized O~(n2/3+ϵ)\tilde{O}(n^{2/3 + \epsilon})-competitive algorithm. The state-of-the-art online algorithm for general costs is due to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP 2018) and is O~(k1/2+ϵ)\tilde{O}(k^{1/2 + \epsilon})-competitive. In the offline version, the current best approximation ratio with uniform costs is O~(n26/45+ϵ)\tilde{O}(n^{26/45 + \epsilon}), due to Abboud and Bodwin (SODA 2018). A small modification of the online covering framework by Buchbinder and Naor implies a polynomial-time primal-dual approach with separation oracles, which a priori might perform exponentially many calls. We convert the online spanner problem and the online Steiner forest problem into online covering problems and round in a problem-specific fashion

    Fast Approximation Algorithms for the Generalized Survivable Network Design Problem

    Get PDF

    Algorithmic Graph Theory

    Get PDF
    The main focus of this workshop was on mathematical techniques needed for the development of efficient solutions and algorithms for computationally difficult graph problems. The techniques studied at the workshhop included: the probabilistic method and randomized algorithms, approximation and optimization, structured families of graphs and approximation algorithms for large problems. The workshop Algorithmic Graph Theory was attended by 46 participants, many of them being young researchers. In 15 survey talks an overview of recent developments in Algorithmic Graph Theory was given. These talks were supplemented by 10 shorter talks and by two special sessions

    Improved Approximation Algorithms for (Budgeted) Node-weighted Steiner Problems

    Full text link
    Moss and Rabani[12] study constrained node-weighted Steiner tree problems with two independent weight values associated with each node, namely, cost and prize (or penalty). They give an O(log n)-approximation algorithm for the prize-collecting node-weighted Steiner tree problem (PCST). They use the algorithm for PCST to obtain a bicriteria (2, O(log n))-approximation algorithm for the Budgeted node-weighted Steiner tree problem. Their solution may cost up to twice the budget, but collects a factor Omega(1/log n) of the optimal prize. We improve these results from at least two aspects. Our first main result is a primal-dual O(log h)-approximation algorithm for a more general problem, prize-collecting node-weighted Steiner forest, where we have (h) demands each requesting the connectivity of a pair of vertices. Our algorithm can be seen as a greedy algorithm which reduces the number of demands by choosing a structure with minimum cost-to-reduction ratio. This natural style of argument (also used by Klein and Ravi[10] and Guha et al.[8]) leads to a much simpler algorithm than that of Moss and Rabani[12] for PCST. Our second main contribution is for the Budgeted node-weighted Steiner tree problem, which is also an improvement to [12] and [8]. In the unrooted case, we improve upon an O(log^2(n))-approximation of [8], and present an O(log n)-approximation algorithm without any budget violation. For the rooted case, where a specified vertex has to appear in the solution tree, we improve the bicriteria result of [12] to a bicriteria approximation ratio of (1+eps, O(log n)/(eps^2)) for any positive (possibly subconstant) (eps). That is, for any permissible budget violation (1+eps), we present an algorithm achieving a tradeoff in the guarantee for prize. Indeed, we show that this is almost tight for the natural linear-programming relaxation used by us as well as in [12].Comment: To appear in ICALP 201
    corecore