67 research outputs found

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    ΠŸΡ€ΠΈΠΌΠΈΡ‚ΠΈΠ²Ρ‹ двиТСния Ρ€ΠΎΠ±ΠΎΡ‚Π° Π² Π·Π°Π΄Π°Ρ‡Π΅ планирования Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ с кинСматичСскими ограничСниями

    Get PDF
    Automatic trajectory planning is an urgent scientific and technical problem, whose solutions are in demand in many fields: unmanned transportation, robotic logistics, social robotics, etc. Often, when planning a trajectory, it is necessary to consider the fact that the agent (robot, unmanned car, etc.) cannot arbitrarily change its orientation while moving, in other words, it is necessary to consider kinematic constraints when planning. One widespread approach to solving this problem is the approach that relies on the construction of a trajectory from prepared parts, motion primitives, each of which satisfies kinematic constraints. Often, the emphasis in the development of methods implementing this approach is on reducing the combinations of choices in planning (heuristic search), with the set of available primitives itself being regarded as externally defined. In this paper, on the contrary, we aim to investigate and analyze the effect of different available motion primitives on the quality of solving the planning problem with a fixed search algorithm. Specifically, we consider 3 different sets of motion primitives for a wheeled robot with differential drive. As a search algorithm, the A* algorithm well known in artificial intelligence and robotics is used. The solution quality is evaluated by 6 metrics, including planning time, length and curvature of the resulting trajectory. Based on the study, conclusions are made about the factors that have the strongest influence on the planning result, and recommendations are given on the construction of motion primitives, the use of which allows to achieve a balance between the speed of the planning algorithm and the quality of the trajectories found.АвтоматичСскоС ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ – Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π°Ρ Π½Π°ΡƒΡ‡Π½ΠΎ-тСхничСская Π·Π°Π΄Π°Ρ‡Π°, Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ вострСбованы Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… областях: бСспилотный транспорт, роботизированная логистика, ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ€ΠΎΠ±ΠΎΡ‚ΠΎΡ‚Π΅Ρ…Π½ΠΈΠΊΠ° ΠΈ Ρ‚.Π΄. Π—Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ ΠΏΡ€ΠΈ ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ Π°Π³Π΅Π½Ρ‚ (Ρ€ΠΎΠ±ΠΎΡ‚, бСспилотный Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ ΠΈ Π΄Ρ€.) Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎ ΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ, Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами – Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ кинСматичСскиС ограничСния ΠΏΡ€ΠΈ ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ. Одним ΠΈΠ· ΡˆΠΈΡ€ΠΎΠΊΠΎ-распространСнных ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ этой Π·Π°Π΄Π°Ρ‡ΠΈ являСтся ΠΏΠΎΠ΄Ρ…ΠΎΠ΄, ΠΎΠΏΠΈΡ€Π°ΡŽΡ‰ΠΈΠΉΡΡ Π½Π° конструированиС Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΈΠ· Π·Π°Ρ€Π°Π½Π΅Π΅ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ², ΠΏΡ€ΠΈΠΌΠΈΡ‚ΠΈΠ²ΠΎΠ² двиТСния, ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ удовлСтворяСт кинСматичСским ограничСниям. Π—Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ, Π°ΠΊΡ†Π΅Π½Ρ‚ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… этот ΠΏΠΎΠ΄Ρ…ΠΎΠ΄, дСлаСтся Π½Π° сокращСнии ΠΏΠ΅Ρ€Π΅Π±ΠΎΡ€Π° Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ (эвристичСский поиск), ΠΏΡ€ΠΈ этом сам Π½Π°Π±ΠΎΡ€ доступных ΠΏΡ€ΠΈΠΌΠΈΡ‚ΠΈΠ²ΠΎΠ² считаСтся Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ ΠΈΠ·Π²Π½Π΅. Π’ этой ΠΆΠ΅ Ρ€Π°Π±ΠΎΡ‚Π΅, ΠΌΡ‹ Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚ ставим своСй Ρ†Π΅Π»ΡŒΡŽ провСсти исслСдованиС ΠΈ Π°Π½Π°Π»ΠΈΠ· влияния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… доступных ΠΏΡ€ΠΈΠΌΠΈΡ‚ΠΈΠ²ΠΎΠ² двиТСния Π½Π° качСство Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ планирования ΠΏΡ€ΠΈ фиксированном Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ΅ поиска. Π’ частности, Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ 3 Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π½Π°Π±ΠΎΡ€Π° ΠΏΡ€ΠΈΠΌΠΈΡ‚ΠΈΠ²ΠΎΠ² двиТСния для колСсного Ρ€ΠΎΠ±ΠΎΡ‚Π° с Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΎΠΌ. Π’ качСствС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° поиска ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ извСстный Π² искусствСнном ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π΅ ΠΈ Ρ€ΠΎΠ±ΠΎΡ‚ΠΎΡ‚Π΅Ρ…Π½ΠΈΠΊΠ΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ A*. ΠšΠ°Ρ‡Π΅ΡΡ‚Π²ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ оцСниваСтся ΠΏΠΎ 6 ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠ°ΠΌ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ врСмя планирования, Π΄Π»ΠΈΠ½Ρƒ ΠΈ ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½Ρƒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ. На основании ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ исслСдования Π΄Π΅Π»Π°ΡŽΡ‚ΡΡ Π²Ρ‹Π²ΠΎΠ΄Ρ‹ ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°Ρ…, ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… наибольшСС влияниС Π½Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ планирования, ΠΈ Π΄Π°ΡŽΡ‚ΡΡ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ ΠΏΡ€ΠΈΠΌΠΈΡ‚ΠΈΠ²ΠΎΠ² двиТСния, использованиС ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… позволяСт Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ баланса ΠΌΠ΅ΠΆΠ΄Ρƒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° планирования ΠΈ качСством отыскиваСмых Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΉ

    System Design, Motion Modelling and Planning for a Recon figurable Wheeled Mobile Robot

    Get PDF
    Over the past ve decades the use of mobile robotic rovers to perform in-situ scienti c investigations on the surfaces of the Moon and Mars has been tremendously in uential in shaping our understanding of these extraterrestrial environments. As robotic missions have evolved there has been a greater desire to explore more unstructured terrain. This has exposed mobility limitations with conventional rover designs such as getting stuck in soft soil or simply not being able to access rugged terrain. Increased mobility and terrain traversability are key requirements when considering designs for next generation planetary rovers. Coupled with these requirements is the need to autonomously navigate unstructured terrain by taking full advantage of increased mobility. To address these issues, a high degree-of-freedom recon gurable platform that is capable of energy intensive legged locomotion in obstacle-rich terrain as well as wheeled locomotion in benign terrain is proposed. The complexities of the planning task that considers the high degree-of-freedom state space of this platform are considerable. A variant of asymptotically optimal sampling-based planners that exploits the presence of dominant sub-spaces within a recon gurable mobile robot's kinematic structure is proposed to increase path quality and ensure platform safety. The contributions of this thesis include: the design and implementation of a highly mobile planetary analogue rover; motion modelling of the platform to enable novel locomotion modes, along with experimental validation of each of these capabilities; the sampling-based HBFMT* planner that hierarchically considers sub-spaces to better guide search of the complete state space; and experimental validation of the planner with the physical platform that demonstrates how the planner exploits the robot's capabilities to uidly transition between various physical geometric con gurations and wheeled/legged locomotion modes

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat PolitΓ¨cnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version
    • …
    corecore