57 research outputs found

    Target parameter estimation for spatial and temporal formulations in MIMO radars using compressive sensing

    Get PDF
    Conventional algorithms used for parameter estimation in colocated multiple-input-multiple-output (MIMO) radars require the inversion of the covariance matrix of the received spatial samples. In these algorithms, the number of received snapshots should be at least equal to the size of the covariance matrix. For large size MIMO antenna arrays, the inversion of the covariance matrix becomes computationally very expensive. Compressive sensing (CS) algorithms which do not require the inversion of the complete covariance matrix can be used for parameter estimation with fewer number of received snapshots. In this work, it is shown that the spatial formulation is best suitable for large MIMO arrays when CS algorithms are used. A temporal formulation is proposed which fits the CS algorithms framework, especially for small size MIMO arrays. A recently proposed low-complexity CS algorithm named support agnostic Bayesian matching pursuit (SABMP) is used to estimate target parameters for both spatial and temporal formulations for the unknown number of targets. The simulation results show the advantage of SABMP algorithm utilizing low number of snapshots and better parameter estimation for both small and large number of antenna elements. Moreover, it is shown by simulations that SABMP is more effective than other existing algorithms at high signal-to-noise ratio

    Beyond the spatio-temporal limits of atmospheric radars: inverse problem techniques and MIMO systems

    Get PDF
    The Earth’s upper atmosphere (UA) is a highly dynamic region dominated by atmospheric waves and stratified turbulence covering a wide range of spatio-temporal scales. A comprehensive study of the UA requires measurements over a broad range of frequencies and spatial wavelengths, which are prohibitively costly. To improve the understanding of the UA, an investment in efficient and large observational infrastructures is required. This work investigates remote sensing techniques based on MIMO and inverse problems techniques to improve the capabilities of current atmospheric radars

    MIMO Radar Waveform Design and Sparse Reconstruction for Extended Target Detection in Clutter

    Get PDF
    This dissertation explores the detection and false alarm rate performance of a novel transmit-waveform and receiver filter design algorithm as part of a larger Compressed Sensing (CS) based Multiple Input Multiple Output (MIMO) bistatic radar system amidst clutter. Transmit-waveforms and receiver filters were jointly designed using an algorithm that minimizes the mutual coherence of the combined transmit-waveform, target frequency response, and receiver filter matrix product as a design criterion. This work considered the Probability of Detection (P D) and Probability of False Alarm (P FA) curves relative to a detection threshold, τ th, Receiver Operating Characteristic (ROC), reconstruction error and mutual coherence measures for performance characterization of the design algorithm to detect both known and fluctuating targets and amidst realistic clutter and noise. Furthermore, this work paired the joint waveform-receiver filter design algorithm with multiple sparse reconstruction algorithms, including: Regularized Orthogonal Matching Pursuit (ROMP), Compressive Sampling Matching Pursuit (CoSaMP) and Complex Approximate Message Passing (CAMP) algorithms. It was found that the transmit-waveform and receiver filter design algorithm significantly outperforms statically designed, benchmark waveforms for the detection of both known and fluctuating extended targets across all tested sparse reconstruction algorithms. In particular, CoSaMP was specified to minimize the maximum allowable P FA of the CS radar system as compared to the baseline ROMP sparse reconstruction algorithm of previous work. However, while the designed waveforms do provide performance gains and CoSaMP affords a reduced peak false alarm rate as compared to the previous work, fluctuating target impulse responses and clutter severely hampered CS radar performance when either of these sparse reconstruction techniques were implemented. To improve detection rate and, by extension, ROC performance of the CS radar system under non-ideal conditions, this work implemented the CAMP sparse reconstruction algorithm in the CS radar system. It was found that detection rates vastly improve with the implementation of CAMP, especially in the case of fluctuating target impulse responses amidst clutter or at low receive signal to noise ratios (β n). Furthermore, where previous work considered a τ th=0, the implementation of a variable τ th in this work offered novel trade off between P D and P FA in radar design to the CS radar system. In the simulated radar scene it was found that τ th could be moderately increased retaining the same or similar P D while drastically improving P FA. This suggests that the selection and specification of the sparse reconstruction algorithm and corresponding τ th for this radar system is not trivial. Rather, a tradeoff was noted between P D and P FA based on the choice and parameters of the sparse reconstruction technique and detection threshold, highlighting an engineering trade-space in CS radar system design. Thus, in CS radar system design, the radar designer must carefully choose and specify the sparse reconstruction technique and appropriate detection threshold in addition to transmit-waveforms, receiver filters and building the dictionary of target impulse responses for detection in the radar scene

    Adaptive OFDM Radar for Target Detection and Tracking

    Get PDF
    We develop algorithms to detect and track targets by employing a wideband orthogonal frequency division multiplexing: OFDM) radar signal. The frequency diversity of the OFDM signal improves the sensing performance since the scattering centers of a target resonate variably at different frequencies. In addition, being a wideband signal, OFDM improves the range resolution and provides spectral efficiency. We first design the spectrum of the OFDM signal to improve the radar\u27s wideband ambiguity function. Our designed waveform enhances the range resolution and motivates us to use adaptive OFDM waveform in specific problems, such as the detection and tracking of targets. We develop methods for detecting a moving target in the presence of multipath, which exist, for example, in urban environments. We exploit the multipath reflections by utilizing different Doppler shifts. We analytically evaluate the asymptotic performance of the detector and adaptively design the OFDM waveform, by maximizing the noncentrality-parameter expression, to further improve the detection performance. Next, we transform the detection problem into the task of a sparse-signal estimation by making use of the sparsity of multiple paths. We propose an efficient sparse-recovery algorithm by employing a collection of multiple small Dantzig selectors, and analytically compute the reconstruction performance in terms of the ell1ell_1-constrained minimal singular value. We solve a constrained multi-objective optimization algorithm to design the OFDM waveform and infer that the resultant signal-energy distribution is in proportion to the distribution of the target energy across different subcarriers. Then, we develop tracking methods for both a single and multiple targets. We propose an tracking method for a low-grazing angle target by realistically modeling different physical and statistical effects, such as the meteorological conditions in the troposphere, curved surface of the earth, and roughness of the sea-surface. To further enhance the tracking performance, we integrate a maximum mutual information based waveform design technique into the tracker. To track multiple targets, we exploit the inherent sparsity on the delay-Doppler plane to develop an computationally efficient procedure. For computational efficiency, we use more prior information to dynamically partition a small portion of the delay-Doppler plane. We utilize the block-sparsity property to propose a block version of the CoSaMP algorithm in the tracking filter

    Target Parameter Estimation for MIMO Radars

    Get PDF

    OFDM passive radar employing compressive processing in MIMO configurations

    Get PDF
    A key advantage of passive radar is that it provides a means of performing position detection and tracking without the need for transmission of energy pulses. In this respect, passive radar systems utilising (receiving) orthogonal frequency division multiplexing (OFDM) communications signals from transmitters using OFDM standards such as long term evolution (LTE), WiMax or WiFi, are considered. Receiving a stronger reference signal for the matched filtering, detecting a lower target signature is one of the challenges in the passive radar. Impinging at the receiver, the OFDM waveforms supply two-dimensional virtual uniform rectangul ararray with the first and second dimensions refer to time delays and Doppler frequencies respectively. A subspace method, multiple signals classification (MUSIC) algorithm, demonstrated the signal extraction using multiple time samples. Apply normal measurements, this problem requires high computational resources regarding the number of OFDM subcarriers. For sub-Nyquist sampling, compressive sensing (CS) becomes attractive. A single snap shot measurement can be applied with Basis Pursuit (BP), whereas l1-singular value decomposition (l1-SVD) is applied for the multiple snapshots. Employing multiple transmitters, the diversity in the detection process can be achieved. While a passive means of attaining three-dimensional large-set measurements is provided by co-located receivers, there is a significant computational burden in terms of the on-line analysis of such data sets. In this thesis, the passive radar problem is presented as a mathematically sparse problem and interesting solutions, BP and l1-SVD as well as Bayesian compressive sensing, fast-Besselk, are considered. To increase the possibility of target signal detection, beamforming in the compressive domain is also introduced with the application of conve xoptimization and subspace orthogonality. An interference study is also another problem when reconstructing the target signal. The networks of passive radars are employed using stochastic geometry in order to understand the characteristics of interference, and the effect of signal to interference plus noise ratio (SINR). The results demonstrate the outstanding performance of l1-SVD over MUSIC when employing multiple snapshots. The single snapshot problem along with fast-BesselK multiple-input multiple-output configuration can be solved using fast-BesselK and this allows the compressive beamforming for detection capability

    6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities

    Get PDF
    We are on the cusp of a new era of connected autonomous vehicles with unprecedented user experiences, tremendously improved road safety and air quality, highly diverse transportation environments and use cases, and a plethora of advanced applications. Realizing this grand vision requires a significantly enhanced vehicle-to-everything (V2X) communication network that should be extremely intelligent and capable of concurrently supporting hyperfast, ultrareliable, and low-latency massive information exchange. It is anticipated that the sixth-generation (6G) communication systems will fulfill these requirements of the next-generation V2X. In this article, we outline a series of key enabling technologies from a range of domains, such as new materials, algorithms, and system architectures. Aiming for truly intelligent transportation systems, we envision that machine learning (ML) will play an instrumental role in advanced vehicular communication and networking. To this end, we provide an overview of the recent advances of ML in 6G vehicular networks. To stimulate future research in this area, we discuss the strength, open challenges, maturity, and enhancing areas of these technologies
    corecore