56 research outputs found

    A Note on Easy and Efficient Computation of Full Abelian Periods of a Word

    Get PDF
    Constantinescu and Ilie (Bulletin of the EATCS 89, 167-170, 2006) introduced the idea of an Abelian period with head and tail of a finite word. An Abelian period is called full if both the head and the tail are empty. We present a simple and easy-to-implement O(nloglogn)O(n\log\log n)-time algorithm for computing all the full Abelian periods of a word of length nn over a constant-size alphabet. Experiments show that our algorithm significantly outperforms the O(n)O(n) algorithm proposed by Kociumaka et al. (Proc. of STACS, 245-256, 2013) for the same problem.Comment: Accepted for publication in Discrete Applied Mathematic

    String Periods in the Order-Preserving Model

    Get PDF
    The order-preserving model (op-model, in short) was introduced quite recently but has already attracted significant attention because of its applications in data analysis. We introduce several types of periods in this setting (op-periods). Then we give algorithms to compute these periods in time O(n), O(n log log n), O(n log^2 log n/log log log n), O(n log n) depending on the type of periodicity. In the most general variant the number of different periods can be as big as Omega(n^2), and a compact representation is needed. Our algorithms require novel combinatorial insight into the properties of such periods

    Quantum algorithms for problems in number theory, algebraic geometry, and group theory

    Full text link
    Quantum computers can execute algorithms that sometimes dramatically outperform classical computation. Undoubtedly the best-known example of this is Shor's discovery of an efficient quantum algorithm for factoring integers, whereas the same problem appears to be intractable on classical computers. Understanding what other computational problems can be solved significantly faster using quantum algorithms is one of the major challenges in the theory of quantum computation, and such algorithms motivate the formidable task of building a large-scale quantum computer. This article will review the current state of quantum algorithms, focusing on algorithms for problems with an algebraic flavor that achieve an apparent superpolynomial speedup over classical computation.Comment: 20 pages, lecture notes for 2010 Summer School on Diversities in Quantum Computation/Information at Kinki Universit

    Algorithms for Computing Abelian Periods of Words

    Full text link
    Constantinescu and Ilie (Bulletin EATCS 89, 167--170, 2006) introduced the notion of an \emph{Abelian period} of a word. A word of length nn over an alphabet of size σ\sigma can have Θ(n2)\Theta(n^{2}) distinct Abelian periods. The Brute-Force algorithm computes all the Abelian periods of a word in time O(n2×σ)O(n^2 \times \sigma) using O(n×σ)O(n \times \sigma) space. We present an off-line algorithm based on a \sel function having the same worst-case theoretical complexity as the Brute-Force one, but outperforming it in practice. We then present on-line algorithms that also enable to compute all the Abelian periods of all the prefixes of ww.Comment: Accepted for publication in Discrete Applied Mathematic

    On the Parikh-de-Bruijn grid

    Full text link
    We introduce the Parikh-de-Bruijn grid, a graph whose vertices are fixed-order Parikh vectors, and whose edges are given by a simple shift operation. This graph gives structural insight into the nature of sets of Parikh vectors as well as that of the Parikh set of a given string. We show its utility by proving some results on Parikh-de-Bruijn strings, the abelian analog of de-Bruijn sequences.Comment: 18 pages, 3 figures, 1 tabl

    String periods in the order-preserving model

    Full text link
    In the order-preserving model, two strings match if they share the same relative order between the characters at the corresponding positions. This model is quite recent, but it has already attracted significant attention because of its applications in data analysis. We introduce several types of periods in this setting (op-periods). Then we give algorithms to compute these periods in time O(n), O(nlog⁡log⁡n), O(nlog2⁡log⁡n/log⁡log⁡log⁡n), O(nlog⁡n) depending on the type of periodicity. In the most general variant, the number of different op-periods can be as big as Ω(n2), and a compact representation is needed. Our algorithms require novel combinatorial insight into the properties of op-periods. In particular, we characterize the Fine–Wilf property for coprime op-periods. © 2019 Elsevier Inc.Supported by ISF grants no. 824/17 and 1278/16 and by an ERC grant MPM under the EU's Horizon 2020 Research and Innovation Programme (grant no. 683064).Supported by the Ministry of Science and Higher Education of the Russian Federation, project 1.3253.2017.A part of this work was done during the workshop StringMasters in Warsaw 2017 that was sponsored by the Warsaw Center of Mathematics and Computer Science. The authors thank the participants of the workshop, especially Hideo Bannai and Shunsuke Inenaga, for helpful discussions

    Quantum algorithms for algebraic problems

    Full text link
    Quantum computers can execute algorithms that dramatically outperform classical computation. As the best-known example, Shor discovered an efficient quantum algorithm for factoring integers, whereas factoring appears to be difficult for classical computers. Understanding what other computational problems can be solved significantly faster using quantum algorithms is one of the major challenges in the theory of quantum computation, and such algorithms motivate the formidable task of building a large-scale quantum computer. This article reviews the current state of quantum algorithms, focusing on algorithms with superpolynomial speedup over classical computation, and in particular, on problems with an algebraic flavor.Comment: 52 pages, 3 figures, to appear in Reviews of Modern Physic

    Quantum Computing: Lecture Notes

    Full text link
    This is a set of lecture notes suitable for a Master's course on quantum computation and information from the perspective of theoretical computer science. The first version was written in 2011, with many extensions and improvements in subsequent years. The first 10 chapters cover the circuit model and the main quantum algorithms (Deutsch-Jozsa, Simon, Shor, Hidden Subgroup Problem, Grover, quantum walks, Hamiltonian simulation and HHL). They are followed by 3 chapters about complexity, 4 chapters about distributed ("Alice and Bob") settings, and a final chapter about quantum error correction. Appendices A and B give a brief introduction to the required linear algebra and some other mathematical and computer science background. All chapters come with exercises, with some hints provided in Appendix C.Comment: 184 pages. Version 2: added a new chapter about QMA and local Hamiltonian, more exercises in several chapters, and some small corrections/clarification
    corecore