74,798 research outputs found

    Channel Estimation and Symbol Detection In Massive MIMO Systems Using Expectation Propagation

    Get PDF
    The advantages envisioned from using large antenna arrays have made massive multiple- input multiple-output systems (also known as massive MIMO) a promising technology for future wireless standards. Despite the advantages that massive MIMO systems provide, increasing the number of antennas introduces new technical challenges that need to be resolved. In particular, symbol detection is one of the key challenges in massive MIMO. Obtaining accurate channel state information (CSI) for the extremely large number of chan- nels involved is a difficult task and consumes significant resources. Therefore for Massive MIMO systems coherent detectors must be able to cope with highly imperfect CSI. More importantly, non-coherent schemes which do not rely on CSI for symbol detection become very attractive. Expectation propagation (EP) has been recently proposed as a low complexity algo- rithm for symbol detection in massive MIMO systems , where its performance is evaluated on the premise that perfect channel state information (CSI) is available at the receiver. However, in practical systems, exact CSI is not available due to a variety of reasons in- cluding channel estimation errors, quantization errors and aging. In this work we study the performance of EP in the presence of imperfect CSI due to channel estimation er- rors and show that in this case the EP detector experiences significant performance loss. Moreover, the EP detector shows a higher sensitivity to channel estimation errors in the high signal-to-noise ratio (SNR) regions where the rate of its performance improvement decreases. We investigate this behavior of the EP detector and propose a Modified EP detector for colored noise which utilizes the correlation matrix of the channel estimation error. Simulation results verify that the modified algorithm is robust against imperfect CSI and its performance is significantly improved over the EP algorithm, particularly in the higher SNR regions, and that for the modified detector, the slope of the symbol error rate (SER) vs. SNR plots are similar to the case of perfect CSI. Next, an algorithm based on expectation propagation is proposed for noncoherent symbol detection in large-scale SIMO systems. It is verified through simulation that in terms of SER, the proposed detector outperforms the pilotbased coherent MMSE detector for blocks as small as two symbols. This makes the proposed detector suitable for fast fading channels with very short coherence times. In addition, the SER performance of this detec- tor converges to that of the optimum ML receiver when the size of the blocks increases. Finally it is shown that for Rician fading channels, knowledge of the fading parameters is not required for achieving the SER gains. A channel estimation method was recently proposed for multi-cell massive MIMO sys- tems based on the eigenvalue decomposition of the correlation matrix of the received vectors (EVD-based). This algorithm, however, is sensitive to the size of the antenna array as well as the number of samples used in the evaluation of the correlation matrix. As the final work in this dissertation, we present a noncoherent channel estimation and symbol de- tection scheme for multi-cell massive MIMO systems based on expectation propagation. The proposed algorithm is initialized with the channel estimation result from the EVD- based method. Simulation results show that after a few iterations, the EP-based algorithm significantly outperforms the EVD-based method in both channel estimation and symbol error rate. Moreover, the EP-based algorithm is not sensitive to antenna array size or the inaccuracies of sample correlation matrix

    Fast Time-Varying Dispersive Channel Estimation and Equalization for 8-PSK Cellular System

    Get PDF
    In this paper, a novel channel-estimation scheme for an 8-PSK enhanced data rates for GSM evolution (EDGE) system with fast time-varying and frequency-selective fading channels is presented. via a mathematical derivation and simulation results, the channel impulse response (CIR) of the fast fading channel is modeled as a linear function of time during a radio burst in the EDGE system. Therefore, a least-squares-based method is proposed along with the modified burst structure for time-varying channel estimation. Given that the pilot-symbol blocks are located at the front and the end of the data block, the LS-based method is able to estimate the parameters of the time-varying CIR accurately using a linear interpolation. The proposed time-varying estimation algorithm does not cause an error floor that existed in the adaptive algorithms due to a nonideal channel tracking. Besides, the time-varying CIR in the EDGE system is not in its minimum-phase form, as is required for low-complexity reduced-state equalization methods. In order to maintain a good system performance, a Cholesky-decomposition method is introduced in front of the reduced-state equalizer to transform the time-varying CIR into its minimum-phase equivalent form. via simulation results, it is shown that the proposed algorithm is very well suited for the time-varying channel estimation and equalization, and a good bit-error-rate performance is achieved even at high Doppler frequencies up to 300 Hz with a low complexity

    Kalman interpolation filter for channel estimation of LTE downlink in high-mobility environments

    Get PDF
    The estimation of fast-fading LTE downlink channels in high-speed applications of LTE advanced is investigated in this article. In order to adequately track the fast time-varying channel response, an adaptive channel estimation and interpolation algorithm is essential. In this article, the multi-path fast-fading channel is modelled as a tapped-delay, discrete, finite impulse response filter, and the time-correlation of the channel taps is modelled as an autoregressive (AR) process. Using this AR time-correlation, we develop an extended Kalman filter to jointly estimate the complex-valued channel frequency response and the AR parameters from the transmission of known pilot symbols. Furthermore, the channel estimates at the known pilot symbols are interpolated to the unknown data symbols by using the estimated time-correlation. This article integrates both channel estimation at pilot symbols and interpolation at data symbol into the proposed Kalman interpolation filter. The bit error rate performance of our new channel estimation scheme is demonstrated via simulation examples for LTE and fast-fading channels in high-speed applications

    Visualization on colour based flow vector of thermal image for movement detection during interactive session

    Get PDF
    Recently thermal imaging is exploited in applications such as motion and face detection. It has drawn attention many researchers to build such technology to improve lifestyle. This work proposed a technique to detect and identify a motion in sequence images for the application in security monitoring system or outdoor surveillance. Conventional system might cause false information with the present of shadow. Thus, methods employed in this work are Canny edge detector method, Lucas Kanade and Horn Shunck algorithms, to overcome the major problem when using thresholding method, which is only intensity or pixel magnitude is considered instead of relationships between the pixels. The results obtained could be observed in flow vector parameter and the segmentation colour based image for the time frame from 1 to 10 seconds. The visualization of both the parameters clarified the movement and changes of pixel intensity between two frames by the supportive colour segmentation, either in smooth or rough motion. Thus, this technique may contribute to others application such as biometrics, military system, and surveillance machine

    Adaptive Bayesian decision feedback equalizer for dispersive mobile radio channels

    No full text
    The paper investigates adaptive equalization of time dispersive mobile ratio fading channels and develops a robust high performance Bayesian decision feedback equalizer (DFE). The characteristics and implementation aspects of this Bayesian DFE are analyzed, and its performance is compared with those of the conventional symbol or fractional spaced DFE and the maximum likelihood sequence estimator (MLSE). In terms of computational complexity, the adaptive Bayesian DFE is slightly more complex than the conventional DFE but is much simpler than the adaptive MLSE. In terms of error rate in symbol detection, the adaptive Bayesian DFE outperforms the conventional DFE dramatically. Moreover, for severely fading multipath channels, the adaptive MLSE exhibits significant degradation from the theoretical optimal performance and becomes inferior to the adaptive Bayesian DFE

    Achieving Low-Complexity Maximum-Likelihood Detection for the 3D MIMO Code

    Get PDF
    The 3D MIMO code is a robust and efficient space-time block code (STBC) for the distributed MIMO broadcasting but suffers from high maximum-likelihood (ML) decoding complexity. In this paper, we first analyze some properties of the 3D MIMO code to show that the 3D MIMO code is fast-decodable. It is proved that the ML decoding performance can be achieved with a complexity of O(M^{4.5}) instead of O(M^8) in quasi static channel with M-ary square QAM modulations. Consequently, we propose a simplified ML decoder exploiting the unique properties of 3D MIMO code. Simulation results show that the proposed simplified ML decoder can achieve much lower processing time latency compared to the classical sphere decoder with Schnorr-Euchner enumeration

    SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter

    Get PDF
    A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments
    corecore