277 research outputs found

    Fast Adaptive Reparametrization (FAR) with Application to Human Action Recognition

    Get PDF
    In this paper, a fast approach for curve reparametrization, called Fast Adaptive Reparamterization (FAR), is introduced. Instead of computing an optimal matching between two curves such as Dynamic Time Warping (DTW) and elastic distance-based approaches, our method is applied to each curve independently, leading to linear computational complexity. It is based on a simple replacement of the curve parameter by a variable invariant under specific variations of reparametrization. The choice of this variable is heuristically made according to the application of interest. In addition to being fast, the proposed reparametrization can be applied not only to curves observed in Euclidean spaces but also to feature curves living in Riemannian spaces. To validate our approach, we apply it to the scenario of human action recognition using curves living in the Riemannian product Special Euclidean space SE(3) n. The obtained results on three benchmarks for human action recognition (MSRAction3D, Florence3D, and UTKinect) show that our approach competes with state-of-the-art methods in terms of accuracy and computational cost

    Learning to Represent Haptic Feedback for Partially-Observable Tasks

    Full text link
    The sense of touch, being the earliest sensory system to develop in a human body [1], plays a critical part of our daily interaction with the environment. In order to successfully complete a task, many manipulation interactions require incorporating haptic feedback. However, manually designing a feedback mechanism can be extremely challenging. In this work, we consider manipulation tasks that need to incorporate tactile sensor feedback in order to modify a provided nominal plan. To incorporate partial observation, we present a new framework that models the task as a partially observable Markov decision process (POMDP) and learns an appropriate representation of haptic feedback which can serve as the state for a POMDP model. The model, that is parametrized by deep recurrent neural networks, utilizes variational Bayes methods to optimize the approximate posterior. Finally, we build on deep Q-learning to be able to select the optimal action in each state without access to a simulator. We test our model on a PR2 robot for multiple tasks of turning a knob until it clicks.Comment: IEEE International Conference on Robotics and Automation (ICRA), 201

    Investigating Peptide/RNA binding in Anti-HIV research by molecular simulations: electrostatic recognition and accelerated sampling

    Get PDF
    Studying protein/RNA binding is of great biological and pharmaceutical importance. In the past two decades, RNA has gained growing attention in biomedical and pharmaceutical research due to its key roles in gene replication and expression [1, 2]. From a pharmaceutical point of view, the advantages of targeting RNA over the conventional protein targets include slower drug-resistance development, more selective inhibition, and lower cytotoxicity. Targeting RNA is, however, more challenging than targeting proteins. Designing RNA-binding drugs is limited by the lack of medicinal chemistry studies on RNA and the poor understanding of ligand/RNA molecular recognition mechanisms..

    Analysis of 3D objects at multiple scales (application to shape matching)

    Get PDF
    Depuis quelques années, l évolution des techniques d acquisition a entraîné une généralisation de l utilisation d objets 3D très dense, représentés par des nuages de points de plusieurs millions de sommets. Au vu de la complexité de ces données, il est souvent nécessaire de les analyser pour en extraire les structures les plus pertinentes, potentiellement définies à plusieurs échelles. Parmi les nombreuses méthodes traditionnellement utilisées pour analyser des signaux numériques, l analyse dite scale-space est aujourd hui un standard pour l étude des courbes et des images. Cependant, son adaptation aux données 3D pose des problèmes d instabilité et nécessite une information de connectivité, qui n est pas directement définie dans les cas des nuages de points. Dans cette thèse, nous présentons une suite d outils mathématiques pour l analyse des objets 3D, sous le nom de Growing Least Squares (GLS). Nous proposons de représenter la géométrie décrite par un nuage de points via une primitive du second ordre ajustée par une minimisation aux moindres carrés, et cela à pour plusieurs échelles. Cette description est ensuite derivée analytiquement pour extraire de manière continue les structures les plus pertinentes à la fois en espace et en échelle. Nous montrons par plusieurs exemples et comparaisons que cette représentation et les outils associés définissent une solution efficace pour l analyse des nuages de points à plusieurs échelles. Un défi intéressant est l analyse d objets 3D acquis dans le cadre de l étude du patrimoine culturel. Dans cette thèse, nous nous étudions les données générées par l acquisition des fragments des statues entourant par le passé le Phare d Alexandrie, Septième Merveille du Monde. Plus précisément, nous nous intéressons au réassemblage d objets fracturés en peu de fragments (une dizaine), mais avec de nombreuses parties manquantes ou fortement dégradées par l action du temps. Nous proposons un formalisme pour la conception de systèmes d assemblage virtuel semi-automatiques, permettant de combiner à la fois les connaissances des archéologues et la précision des algorithmes d assemblage. Nous présentons deux systèmes basés sur cette conception, et nous montrons leur efficacité dans des cas concrets.Over the last decades, the evolution of acquisition techniques yields the generalization of detailed 3D objects, represented as huge point sets composed of millions of vertices. The complexity of the involved data often requires to analyze them for the extraction and characterization of pertinent structures, which are potentially defined at multiple scales. Amongthe wide variety of methods proposed to analyze digital signals, the scale-space analysis istoday a standard for the study of 2D curves and images. However, its adaptation to 3D dataleads to instabilities and requires connectivity information, which is not directly availablewhen dealing with point sets.In this thesis, we present a new multi-scale analysis framework that we call the GrowingLeast Squares (GLS). It consists of a robust local geometric descriptor that can be evaluatedon point sets at multiple scales using an efficient second-order fitting procedure. We proposeto analytically differentiate this descriptor to extract continuously the pertinent structuresin scale-space. We show that this representation and the associated toolbox define an effi-cient way to analyze 3D objects represented as point sets at multiple scales. To this end, we demonstrate its relevance in various application scenarios.A challenging application is the analysis of acquired 3D objects coming from the CulturalHeritage field. In this thesis, we study a real-world dataset composed of the fragments ofthe statues that were surrounding the legendary Alexandria Lighthouse. In particular, wefocus on the problem of fractured object reassembly, consisting of few fragments (up to aboutten), but with missing parts due to erosion or deterioration. We propose a semi-automaticformalism to combine both the archaeologist s knowledge and the accuracy of geometricmatching algorithms during the reassembly process. We use it to design two systems, andwe show their efficiency in concrete cases.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Analysis of 3D objects at multiple scales (application to shape matching)

    Get PDF
    Depuis quelques années, l évolution des techniques d acquisition a entraîné une généralisation de l utilisation d objets 3D très dense, représentés par des nuages de points de plusieurs millions de sommets. Au vu de la complexité de ces données, il est souvent nécessaire de les analyser pour en extraire les structures les plus pertinentes, potentiellement définies à plusieurs échelles. Parmi les nombreuses méthodes traditionnellement utilisées pour analyser des signaux numériques, l analyse dite scale-space est aujourd hui un standard pour l étude des courbes et des images. Cependant, son adaptation aux données 3D pose des problèmes d instabilité et nécessite une information de connectivité, qui n est pas directement définie dans les cas des nuages de points. Dans cette thèse, nous présentons une suite d outils mathématiques pour l analyse des objets 3D, sous le nom de Growing Least Squares (GLS). Nous proposons de représenter la géométrie décrite par un nuage de points via une primitive du second ordre ajustée par une minimisation aux moindres carrés, et cela à pour plusieurs échelles. Cette description est ensuite derivée analytiquement pour extraire de manière continue les structures les plus pertinentes à la fois en espace et en échelle. Nous montrons par plusieurs exemples et comparaisons que cette représentation et les outils associés définissent une solution efficace pour l analyse des nuages de points à plusieurs échelles. Un défi intéressant est l analyse d objets 3D acquis dans le cadre de l étude du patrimoine culturel. Dans cette thèse, nous nous étudions les données générées par l acquisition des fragments des statues entourant par le passé le Phare d Alexandrie, Septième Merveille du Monde. Plus précisément, nous nous intéressons au réassemblage d objets fracturés en peu de fragments (une dizaine), mais avec de nombreuses parties manquantes ou fortement dégradées par l action du temps. Nous proposons un formalisme pour la conception de systèmes d assemblage virtuel semi-automatiques, permettant de combiner à la fois les connaissances des archéologues et la précision des algorithmes d assemblage. Nous présentons deux systèmes basés sur cette conception, et nous montrons leur efficacité dans des cas concrets.Over the last decades, the evolution of acquisition techniques yields the generalization of detailed 3D objects, represented as huge point sets composed of millions of vertices. The complexity of the involved data often requires to analyze them for the extraction and characterization of pertinent structures, which are potentially defined at multiple scales. Amongthe wide variety of methods proposed to analyze digital signals, the scale-space analysis istoday a standard for the study of 2D curves and images. However, its adaptation to 3D dataleads to instabilities and requires connectivity information, which is not directly availablewhen dealing with point sets.In this thesis, we present a new multi-scale analysis framework that we call the GrowingLeast Squares (GLS). It consists of a robust local geometric descriptor that can be evaluatedon point sets at multiple scales using an efficient second-order fitting procedure. We proposeto analytically differentiate this descriptor to extract continuously the pertinent structuresin scale-space. We show that this representation and the associated toolbox define an effi-cient way to analyze 3D objects represented as point sets at multiple scales. To this end, we demonstrate its relevance in various application scenarios.A challenging application is the analysis of acquired 3D objects coming from the CulturalHeritage field. In this thesis, we study a real-world dataset composed of the fragments ofthe statues that were surrounding the legendary Alexandria Lighthouse. In particular, wefocus on the problem of fractured object reassembly, consisting of few fragments (up to aboutten), but with missing parts due to erosion or deterioration. We propose a semi-automaticformalism to combine both the archaeologist s knowledge and the accuracy of geometricmatching algorithms during the reassembly process. We use it to design two systems, andwe show their efficiency in concrete cases.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF
    • …
    corecore