21 research outputs found

    Visual Analytics of Cascaded Bottlenecks in Planar Flow Networks

    Get PDF
    Finding bottlenecks and eliminating them to increase the overall flow of a network often appears in real world applications, such as production planning, factory layout, flow related physical approaches, and even cyber security. In many cases, several edges can form a bottleneck (cascaded bottlenecks). This work presents a visual analytics methodology to analyze these cascaded bottlenecks. The methodology consists of multiple steps: identification of bottlenecks, identification of potential improvements, communication of bottlenecks, interactive adaption of bottlenecks, and a feedback loop that allows users to adapt flow networks and their resulting bottlenecks until they are satisfied with the flow network configuration. To achieve this, the definition of a minimal cut is extended to identify network edges that form a (cascaded) bottleneck. To show the effectiveness of the presented approach, we applied the methodology to two flow network setups and show how the overall flow of these networks can be improved

    Topologically robust CAD model generation for structural optimisation

    Get PDF
    Computer-aided design (CAD) models play a crucial role in the design, manufacturing and maintenance of products. Therefore, the mesh-based finite element descriptions common in structural optimisation must be first translated into CAD models. Currently, this can at best be performed semi-manually. We propose a fully automated and topologically accurate approach to synthesise a structurally-sound parametric CAD model from topology optimised finite element models. Our solution is to first convert the topology optimised structure into a spatial frame structure and then to regenerate it in a CAD system using standard constructive solid geometry (CSG) operations. The obtained parametric CAD models are compact, that is, have as few as possible geometric parameters, which makes them ideal for editing and further processing within a CAD system. The critical task of converting the topology optimised structure into an optimal spatial frame structure is accomplished in several steps. We first generate from the topology optimised voxel model a one-voxel-wide voxel chain model using a topology-preserving skeletonisation algorithm from digital topology. The weighted undirected graph defined by the voxel chain model yields a spatial frame structure after processing it with standard graph algorithms. Subsequently, we optimise the cross-sections and layout of the frame members to recover its optimality, which may have been compromised during the conversion process. At last, we generate the obtained frame structure in a CAD system by repeatedly combining primitive solids, like cylinders and spheres, using boolean operations. The resulting solid model is a boundary representation (B-Rep) consisting of trimmed non-uniform rational B-spline (NURBS) curves and surfaces

    Fehlerkaschierte Bildbasierte Darstellungsverfahren

    Get PDF
    Creating photo-realistic images has been one of the major goals in computer graphics since its early days. Instead of modeling the complexity of nature with standard modeling tools, image-based approaches aim at exploiting real-world footage directly,as they are photo-realistic by definition. A drawback of these approaches has always been that the composition or combination of different sources is a non-trivial task, often resulting in annoying visible artifacts. In this thesis we focus on different techniques to diminish visible artifacts when combining multiple images in a common image domain. The results are either novel images, when dealing with the composition task of multiple images, or novel video sequences rendered in real-time, when dealing with video footage from multiple cameras.Fotorealismus ist seit jeher eines der großen Ziele in der Computergrafik. Anstatt die Komplexität der Natur mit standardisierten Modellierungswerkzeugen nachzubauen, gehen bildbasierte Ansätze den umgekehrten Weg und verwenden reale Bildaufnahmen zur Modellierung, da diese bereits per Definition fotorealistisch sind. Ein Nachteil dieser Variante ist jedoch, dass die Komposition oder Kombination mehrerer Quellbilder eine nichttriviale Aufgabe darstellt und häufig unangenehm auffallende Artefakte im erzeugten Bild nach sich zieht. In dieser Dissertation werden verschiedene Ansätze verfolgt, um Artefakte zu verhindern oder abzuschwächen, welche durch die Komposition oder Kombination mehrerer Bilder in einer gemeinsamen Bilddomäne entstehen. Im Ergebnis liefern die vorgestellten Verfahren neue Bilder oder neue Ansichten einer Bildsammlung oder Videosequenz, je nachdem, ob die jeweilige Aufgabe die Komposition mehrerer Bilder ist oder die Kombination mehrerer Videos verschiedener Kameras darstellt

    Acta Cybernetica : Volume 25. Number 2.

    Get PDF

    1991 OURE report, including the 1st Annual UMR Undergraduate Research Symposium -- Entire Proceedings

    Get PDF
    The Opportunities for Undergraduate Research Experiences program began in 1990. The aims were to enrich the learning process and make it more active, encourage interaction between students and faculty members, raise the level of research on the campus, help recruit superior students to the graduate program, and support the notion that teaching and research are compatible and mutually reinforcing. Chancellor Jischke made available an annual budget of $50,000 to support the program. As the papers herein attest, the OURE program is achieving its goals — UMR graduates have performed research on an enormous variety of topics, have worked closely with faculty members, and have experienced deeply both the pleasures and frustrations of research. Several of the undergraduates whose papers are included are now graduate students at UMR or elsewhere. Others, who have not yet graduated, are eager to submit proposals to the next OURE round. I am sure all involved join me in expressing gratitude to Chancellor Jischke for inaugurating the program. The first section of this volume is made up of papers presented at the first annual UMR Undergraduate Research Symposium, held in April 1991. Joining the UMR undergraduates in the Symposium were students from other colleges and universities who had participated in an NSF- sponsored summer program of research on parallel processing conducted by the UMR Computer Science Department

    Advances in Robot Navigation

    Get PDF
    Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics

    New Techniques for the Modeling, Processing and Visualization of Surfaces and Volumes

    Get PDF
    With the advent of powerful 3D acquisition technology, there is a growing demand for the modeling, processing, and visualization of surfaces and volumes. The proposed methods must be efficient and robust, and they must be able to extract the essential structure of the data and to easily and quickly convey the most significant information to a human observer. Independent of the specific nature of the data, the following fundamental problems can be identified: shape reconstruction from discrete samples, data analysis, and data compression. This thesis presents several novel solutions to these problems for surfaces (Part I) and volumes (Part II). For surfaces, we adopt the well-known triangle mesh representation and develop new algorithms for discrete curvature estimation,detection of feature lines, and line-art rendering (Chapter 3), for connectivity encoding (Chapter 4), and for topology preserving compression of 2D vector fields (Chapter 5). For volumes, that are often given as discrete samples, we base our approach for reconstruction and visualization on the use of new trivariate spline spaces on a certain tetrahedral partition. We study the properties of the new spline spaces (Chapter 7) and present efficient algorithms for reconstruction and visualization by iso-surface rendering for both, regularly (Chapter 8) and irregularly (Chapter 9) distributed data samples
    corecore