959 research outputs found

    The ear as a biometric

    No full text
    It is more than 10 years since the first tentative experiments in ear biometrics were conducted and it has now reached the “adolescence” of its development towards a mature biometric. Here we present a timely retrospective of the ensuing research since those early days. Whilst its detailed structure may not be as complex as the iris, we show that the ear has unique security advantages over other biometrics. It is most unusual, even unique, in that it supports not only visual and forensic recognition, but also acoustic recognition at the same time. This, together with its deep three-dimensional structure and its robust resistance to change with age will make it very difficult to counterfeit thus ensuring that the ear will occupy a special place in situations requiring a high degree of protection

    Pose Invariant 3D Face Authentication based on Gaussian Fields Approach

    Get PDF
    This thesis presents a novel illuminant invariant approach to recognize the identity of an individual from his 3D facial scan in any pose, by matching it with a set of frontal models stored in the gallery. In view of today’s security concerns, 3D face reconstruction and recognition has gained a significant position in computer vision research. The non intrusive nature of facial data acquisition makes face recognition one of the most popular approaches for biometrics-based identity recognition. Depth information of a 3D face can be used to solve the problems of illumination and pose variation associated with face recognition. The proposed method makes use of 3D geometric (point sets) face representations for recognizing faces. The use of 3D point sets to represent human faces in lieu of 2D texture makes this method robust to changes in illumination and pose. The method first automatically registers facial point-sets of the probe with the gallery models through a criterion based on Gaussian force fields. The registration method defines a simple energy function, which is always differentiable and convex in a large neighborhood of the alignment parameters; allowing for the use of powerful standard optimization techniques. The new method overcomes the necessity of close initialization and converges in much less iterations as compared to the Iterative Closest Point algorithm. The use of an optimization method, the Fast Gauss Transform, allows a considerable reduction in the computational complexity of the registration algorithm. Recognition is then performed by using the robust similarity score generated by registering 3D point sets of faces. Our approach has been tested on a large database of 85 individuals with 521 scans at different poses, where the gallery and the probe images have been acquired at significantly different times. The results show the potential of our approach toward a fully pose and illumination invariant system. Our method can be successfully used as a potential biometric system in various applications such as mug shot matching, user verification and access control, and enhanced human computer interaction

    Biometric security: A novel ear recognition approach using a 3D morphable ear model

    Get PDF
    Biometrics is a critical component of cybersecurity that identifies persons by verifying their behavioral and physical traits. In biometric-based authentication, each individual can be correctly recognized based on their intrinsic behavioral or physical features, such as face, fingerprint, iris, and ears. This work proposes a novel approach for human identification using 3D ear images. Usually, in conventional methods, the probe image is registered with each gallery image using computational heavy registration algorithms, making it practically infeasible due to the time-consuming recognition process. Therefore, this work proposes a recognition pipeline that reduces the one-to-one registration between probe and gallery. First, a deep learning-based algorithm is used for ear detection in 3D side face images. Second, a statistical ear model known as a 3D morphable ear model (3DMEM), was constructed to use as a feature extractor from the detected ear images. Finally, a novel recognition algorithm named you morph once (YMO) is proposed for human recognition that reduces the computational time by eliminating one-to-one registration between probe and gallery, which only calculates the distance between the parameters stored in the gallery and the probe. The experimental results show the significance of the proposed method for a real-time application

    Unconstrained Ear Processing: What is Possible and What Must Be Done

    Get PDF

    Challenges in 3D scanning: Focusing on Ears and Multiple View Stereopsis

    Get PDF

    Automating a 3D Point Matching System for Human Faces

    Get PDF
    3D point matching for human faces is opening new possibilities in the fields of face matching, face recognition, face retrieval, biomedical, virtual reality, etc. and is overcoming the limitations of 2D face matching. The purpose of this study is to research and implement an automated 3D point matching system for human faces. This will be added to an existing system implemented for 3D point matching on face models. The current implementation is a manual procedure to find matching between the faces, where a set of landmarks are selected on both sources and target meshes and the faces are registered using ICP and TPS techniques. The study aims to eliminate the manual process by automating the initial landmark selections

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus
    corecore