1,402 research outputs found

    Hyperscale Data Processing With Network-Centric Designs

    Get PDF
    Today’s largest data processing workloads are hosted in cloud data centers. Due to unprecedented data growth and the end of Moore’s Law, these workloads have ballooned to the hyperscale level, encompassing billions to trillions of data items and hundreds to thousands of machines per query. Enabling and expanding with these workloads are highly scalable data center networks that connect up to hundreds of thousands of networked servers. These massive scales fundamentally challenge the designs of both data processing systems and data center networks, and the classic layered designs are no longer sustainable. Rather than optimize these massive layers in silos, we build systems across them with principled network-centric designs. In current networks, we redesign data processing systems with network-awareness to minimize the cost of moving data in the network. In future networks, we propose new interfaces and services that the cloud infrastructure offers to applications and codesign data processing systems to achieve optimal query processing performance. To transform the network to future designs, we facilitate network innovation at scale. This dissertation presents a line of systems work that covers all three directions. It first discusses GraphRex, a network-aware system that combines classic database and systems techniques to push the performance of massive graph queries in current data centers. It then introduces data processing in disaggregated data centers, a promising new cloud proposal. It details TELEPORT, a compute pushdown feature that eliminates data processing performance bottlenecks in disaggregated data centers, and Redy, which provides high-performance caches using remote disaggregated memory. Finally, it presents MimicNet, a fine-grained simulation framework that evaluates network proposals at datacenter scale with machine learning approximation. These systems demonstrate that our ideas in network-centric designs achieve orders of magnitude higher efficiency compared to the state of the art at hyperscale

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable públic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Improving the Performance of Cloud-based Scientific Services

    No full text
    Cloud computing provides access to a large scale set of readily available computing resources at the click of a button. The cloud paradigm has commoditised computing capacity and is often touted as a low-cost model for executing and scaling applications. However, there are significant technical challenges associated with selecting, acquiring, configuring, and managing cloud resources which can restrict the efficient utilisation of cloud capabilities. Scientific computing is increasingly hosted on cloud infrastructure—in which scientific capabilities are delivered to the broad scientific community via Internet-accessible services. This migration from on-premise to on-demand cloud infrastructure is motivated by the sporadic usage patterns of scientific workloads and the associated potential cost savings without the need to purchase, operate, and manage compute infrastructure—a task that few scientific users are trained to perform. However, cloud platforms are not an automatic solution. Their flexibility is derived from an enormous number of services and configuration options, which in turn result in significant complexity for the user. In fact, naïve cloud usage can result in poor performance and excessive costs, which are then directly passed on to researchers. This thesis presents methods for developing efficient cloud-based scientific services. Three real-world scientific services are analysed and a set of common requirements are derived. To address these requirements, this thesis explores automated and scalable methods for inferring network performance, considers various trade-offs (e.g., cost and performance) when provisioning instances, and profiles application performance, all in heterogeneous and dynamic cloud environments. Specifically, network tomography provides the mechanisms to infer network performance in dynamic and opaque cloud networks; cost-aware automated provisioning approaches enable services to consider, in real-time, various trade-offs such as cost, performance, and reliability; and automated application profiling allows a huge search space of applications, instance types, and configurations to be analysed to determine resource requirements and application performance. Finally, these contributions are integrated into an extensible and modular cloud provisioning and resource management service called SCRIMP. Cloud-based scientific applications and services can subscribe to SCRIMP to outsource their provisioning, usage, and management of cloud infrastructures. Collectively, the approaches presented in this thesis are shown to provide order of magnitude cost savings and significant performance improvement when employed by production scientific services

    A queueing theory approach to Pareto-optimal bags-of-tasks scheduling on clouds

    Get PDF
    Cloud hosting services offer computing resources which can scale along with the needs of users. When access to data is limited by the network capacity this scalability also becomes limited. To investigate the impact of this limitation we focus on bags{of{tasks where task data is stored outside the cloud and has to be transferred across the network before task execution can commence. The existing bags-of-tasks estimation tools are not able to provide accurate estimates in such a case. We introduce a queuing{network inspired model which successfully models the limited network resources. Based on the Mean{Value Analysis of this model we derive an efficient procedure that results with an estimate of the makespan and the executions costs for a given configuration of cloud virtual machines. We compare the calculated Pareto set with measurements performed in a number of experiments for real-world bags-of-tasks and validate the proposed model and the accuracy of the estimated configurations

    Using Workload Prediction and Federation to Increase Cloud Utilization

    Get PDF
    The wide-spread adoption of cloud computing has changed how large-scale computing infrastructure is built and managed. Infrastructure-as-a-Service (IaaS) clouds consolidate different separate workloads onto a shared platform and provide a consistent quality of service by overprovisioning capacity. This additional capacity, however, remains idle for extended periods of time and represents a drag on system efficiency.The smaller scale of private IaaS clouds compared to public clouds exacerbates overprovisioning inefficiencies as opportunities for workload consolidation in private clouds are limited. Federation and cycle harvesting capabilities from computational grids help to improve efficiency, but to date have seen only limited adoption in the cloud due to a fundamental mismatch between the usage models of grids and clouds. Computational grids provide high throughput of queued batch jobs on a best-effort basis and enforce user priorities through dynamic job preemption, while IaaS clouds provide immediate feedback to user requests and make ahead-of-time guarantees about resource availability.We present a novel method to enable workload federation across IaaS clouds that overcomes this mismatch between grid and cloud usage models and improves system efficiency while also offering availability guarantees. We develop a new method for faster-than-realtime simulation of IaaS clouds to make predictions about system utilization and leverage this method to estimate the future availability of preemptible resources in the cloud. We then use these estimates to perform careful admission control and provide ahead-of-time bounds on the preemption probability of federated jobs executing on preemptible resources. Finally, we build an end-to-end prototype that addresses practical issues of workload federation and evaluate the prototype's efficacy using real-world traces from big data and compute-intensive production workloads

    Managing energy and server resources in hosting centers

    Get PDF
    • …
    corecore