202 research outputs found

    On Lipschitz Regularization of Convolutional Layers using Toeplitz Matrix Theory

    Full text link
    This paper tackles the problem of Lipschitz regularization of Convolutional Neural Networks. Lipschitz regularity is now established as a key property of modern deep learning with implications in training stability, generalization, robustness against adversarial examples, etc. However, computing the exact value of the Lipschitz constant of a neural network is known to be NP-hard. Recent attempts from the literature introduce upper bounds to approximate this constant that are either efficient but loose or accurate but computationally expensive. In this work, by leveraging the theory of Toeplitz matrices, we introduce a new upper bound for convolutional layers that is both tight and easy to compute. Based on this result we devise an algorithm to train Lipschitz regularized Convolutional Neural Networks

    Robust low-rank training via approximate orthonormal constraints

    Full text link
    With the growth of model and data sizes, a broad effort has been made to design pruning techniques that reduce the resource demand of deep learning pipelines, while retaining model performance. In order to reduce both inference and training costs, a prominent line of work uses low-rank matrix factorizations to represent the network weights. Although able to retain accuracy, we observe that low-rank methods tend to compromise model robustness against adversarial perturbations. By modeling robustness in terms of the condition number of the neural network, we argue that this loss of robustness is due to the exploding singular values of the low-rank weight matrices. Thus, we introduce a robust low-rank training algorithm that maintains the network's weights on the low-rank matrix manifold while simultaneously enforcing approximate orthonormal constraints. The resulting model reduces both training and inference costs while ensuring well-conditioning and thus better adversarial robustness, without compromising model accuracy. This is shown by extensive numerical evidence and by our main approximation theorem that shows the computed robust low-rank network well-approximates the ideal full model, provided a highly performing low-rank sub-network exists

    Theoretical Perspectives on Deep Learning Methods in Inverse Problems

    Get PDF
    In recent years, there have been significant advances in the use of deep learning methods in inverse problems such as denoising, compressive sensing, inpainting, and super-resolution. While this line of works has predominantly been driven by practical algorithms and experiments, it has also given rise to a variety of intriguing theoretical problems. In this paper, we survey some of the prominent theoretical developments in this line of works, focusing in particular on generative priors, untrained neural network priors, and unfolding algorithms. In addition to summarizing existing results in these topics, we highlight several ongoing challenges and open problems

    Deep Learning for Inverse Problems: Performance Characterizations, Learning Algorithms, and Applications

    Get PDF
    Deep learning models have witnessed immense empirical success over the last decade. However, in spite of their widespread adoption, a profound understanding of the generalization behaviour of these over-parameterized architectures is still missing. In this thesis, we provide one such way via a data-dependent characterizations of the generalization capability of deep neural networks based data representations. In particular, by building on the algorithmic robustness framework, we offer a generalisation error bound that encapsulates key ingredients associated with the learning problem such as the complexity of the data space, the cardinality of the training set, and the Lipschitz properties of a deep neural network. We then specialize our analysis to a specific class of model based regression problems, namely the inverse problems. These problems often come with well defined forward operators that map variables of interest to the observations. It is therefore natural to ask whether such knowledge of the forward operator can be exploited in deep learning approaches increasingly used to solve inverse problems. We offer a generalisation error bound that -- apart from the other factors -- depends on the Jacobian of the composition of the forward operator with the neural network. Motivated by our analysis, we then propose a `plug-and-play' regulariser that leverages the knowledge of the forward map to improve the generalization of the network. We likewise also provide a method allowing us to tightly upper bound the norms of the Jacobians of the relevant operators that is much more {computationally} efficient than existing ones. We demonstrate the efficacy of our model-aware regularised deep learning algorithms against other state-of-the-art approaches on inverse problems involving various sub-sampling operators such as those used in classical compressed sensing setup and inverse problems that are of interest in the biomedical imaging setup

    Principles of Neural Network Architecture Design - Invertibility and Domain Knowledge

    Get PDF
    Neural networks architectures allow a tremendous variety of design choices. In this work, we study two principles underlying these architectures: First, the design and application of invertible neural networks (INNs). Second, the incorporation of domain knowledge into neural network architectures. After introducing the mathematical foundations of deep learning, we address the invertibility of standard feedforward neural networks from a mathematical perspective. These results serve as a motivation for our proposed invertible residual networks (i-ResNets). This architecture class is then studied in two scenarios: First, we propose ways to use i-ResNets as a normalizing flow and demonstrate the applicability for high-dimensional generative modeling. Second, we study the excessive invariance of common deep image classifiers and discuss consequences for adversarial robustness. We finish with a study of convolutional neural networks for tumor classification based on imaging mass spectrometry (IMS) data. For this application, we propose an adapted architecture guided by our knowledge of the domain of IMS data and show its superior performance on two challenging tumor classification datasets
    corecore