1,935 research outputs found

    Forced Current Excitation in Selectable Field of View Coils for 7T MRI and MRS

    Get PDF
    High field magnetic resonance imaging (MRI) provides improved signal-to-noise ratio (SNR) which can be translated to higher image resolution or reduced scan time. 7 Tesla (T) breast imaging and 7 T spine imaging are of clinical value, but they are challenging for several reasons: A bilateral breast coil requires the use of closely-spaced elements that are subject to severe mutual coupling which leads to uncontrollable current distribution and non-uniform field pattern; A spine coil at 7T requires a large field of view (FOV) in the z direction and good RF penetration into the human body. Additionally, the ability to switch FOV without the use of expensive high power RF amplifiers is desired in both applications. This capability would allow reconfigurable power distribution and avoid unnecessary heat deposition into human body. Forced-Current Excitation (FCE) is a transmission line-based method that maintains equal current distribution across an array, alleviating mutual coupling effects and allowing current/field replication across a large FOV. At the same time, the nature of this method enables selectable FOV with the inclusion of PIN diodes and a controller. In this doctoral work, the theory of FCE is explained in detail, along with its benefits and drawbacks. Electromagnetic simulation considerations of FCE-driven coils are also discussed. Two FCE-driven coils were designed and implemented: a switchable bilateral/unilateral 7T breast coil, and a segmented dipole for spine imaging at 7T with reconfigurable length. For the breast coil, shielded loop elements were used to form a volume coil, whereas for the spine coil, a segmented dipole was chosen as the final design due to improved RF penetration. Electromagnetic simulations were performed to assist the design of the two coils as well as to predict the SAR (specific absorption rate) generated in the phantom. The coils were evaluated on bench and through MRI experiments in different configurations to validate the design. The switchable breast coil provides uniform excitation in both unilateral and bilateral mode. In unilateral mode, the signal in the contralateral breast is successfully suppressed and higher power is concentrated into the breast of interest; The segmented dipole was compared to a regular dipole with the same length used for 7T spine imaging. The segmented dipole shows a large FOV in the long mode. In the short mode, the residual signal from other part of the dipole is successfully suppressed. The ability to switch FOV and reconfigure the power distribution improves the B1 generated with unit specific absorption rate towards the edge of the dipole, compared to the regular dipole

    Forced Current Excitation in Selectable Field of View Coils for 7T MRI and MRS

    Get PDF
    High field magnetic resonance imaging (MRI) provides improved signal-to-noise ratio (SNR) which can be translated to higher image resolution or reduced scan time. 7 Tesla (T) breast imaging and 7 T spine imaging are of clinical value, but they are challenging for several reasons: A bilateral breast coil requires the use of closely-spaced elements that are subject to severe mutual coupling which leads to uncontrollable current distribution and non-uniform field pattern; A spine coil at 7T requires a large field of view (FOV) in the z direction and good RF penetration into the human body. Additionally, the ability to switch FOV without the use of expensive high power RF amplifiers is desired in both applications. This capability would allow reconfigurable power distribution and avoid unnecessary heat deposition into human body. Forced-Current Excitation (FCE) is a transmission line-based method that maintains equal current distribution across an array, alleviating mutual coupling effects and allowing current/field replication across a large FOV. At the same time, the nature of this method enables selectable FOV with the inclusion of PIN diodes and a controller. In this doctoral work, the theory of FCE is explained in detail, along with its benefits and drawbacks. Electromagnetic simulation considerations of FCE-driven coils are also discussed. Two FCE-driven coils were designed and implemented: a switchable bilateral/unilateral 7T breast coil, and a segmented dipole for spine imaging at 7T with reconfigurable length. For the breast coil, shielded loop elements were used to form a volume coil, whereas for the spine coil, a segmented dipole was chosen as the final design due to improved RF penetration. Electromagnetic simulations were performed to assist the design of the two coils as well as to predict the SAR (specific absorption rate) generated in the phantom. The coils were evaluated on bench and through MRI experiments in different configurations to validate the design. The switchable breast coil provides uniform excitation in both unilateral and bilateral mode. In unilateral mode, the signal in the contralateral breast is successfully suppressed and higher power is concentrated into the breast of interest; The segmented dipole was compared to a regular dipole with the same length used for 7T spine imaging. The segmented dipole shows a large FOV in the long mode. In the short mode, the residual signal from other part of the dipole is successfully suppressed. The ability to switch FOV and reconfigure the power distribution improves the B1 generated with unit specific absorption rate towards the edge of the dipole, compared to the regular dipole

    Multikilowatt transmitter study for space communications satellites, volume 2

    Get PDF
    Multikilowatt transmitter study for space communications satellites - amplifier design

    Wireless tools for neuromodulation

    Get PDF
    Epilepsy is a spectrum of diseases characterized by recurrent seizures. It is estimated that 50 million individuals worldwide are affected and 30% of cases are medically refractory or drug resistant. Vagus nerve stimulation (VNS) and deep brain stimulation (DBS) are the only FDA approved device based therapies. Neither therapy offers complete seizure freedom in a majority of users. Novel methodologies are needed to better understand mechanisms and chronic nature of epilepsy. Most tools for neuromodulation in rodents are tethered. The few wireless devices use batteries or are inductively powered. The tether restricts movement, limits behavioral tests, and increases the risk of infection. Batteries are large and heavy with a limited lifetime. Inductive powering suffers from rapid efficiency drops due to alignment mismatches and increased distances. Miniature wireless tools that offer behavioral freedom, data acquisition, and stimulation are needed. This dissertation presents a platform of electrical, optical and radiofrequency (RF) technologies for device based neuromodulation. The platform can be configured with features including: two channels differential recording, one channel electrical stimulation, and one channel optical stimulation. Typical device operation consumes less than 4 mW. The analog front end has a bandwidth of 0.7 Hz - 1 kHz and a gain of 60 dB, and the constant current driver provides biphasic electrical stimulation. For use with optogenetics, the deep brain optical stimulation module provides 27 mW/mm2 of blue light (473 nm) with 21.01 mA. Pairing of stimulating and recording technologies allows closed-loop operation. A wireless powering cage is designed using the resonantly coupled filter energy transfer (RCFET) methodology. RF energy is coupled through magnetic resonance. The cage has a PTE ranging from 1.8-6.28% for a volume of 11 x 11 x 11 in3. This is sufficient to chronically house subjects. The technologies are validated through various in vivo preparations. The tools are designed to study epilepsy, SUDEP, and urinary incontinence but can be configured for other studies. The broad application of these technologies can enable the scientific community to better study chronic diseases and closed-loop therapies

    A 16 x 16 CMOS amperometric microelectrode array for simultaneous electrochemical measurements

    Get PDF
    There is a requirement for an electrochemical sensor technology capable of making multivariate measurements in environmental, healthcare, and manufacturing applications. Here, we present a new device that is highly parallelized with an excellent bandwidth. For the first time, electrochemical cross-talk for a chip-based sensor is defined and characterized. The new CMOS electrochemical sensor chip is capable of simultaneously taking multiple, independent electroanalytical measurements. The chip is structured as an electrochemical cell microarray, comprised of a microelectrode array connected to embedded self-contained potentiostats. Speed and sensitivity are essential in dynamic variable electrochemical systems. Owing to the parallel function of the system, rapid data collection is possible while maintaining an appropriately low-scan rate. By performing multiple, simultaneous cyclic voltammetry scans in each of the electrochemical cells on the chip surface, we are able to show (with a cell-to-cell pitch of 456 μm) that the signal cross-talk is only 12% between nearest neighbors in a ferrocene rich solution. The system opens up the possibility to use multiple independently controlled electrochemical sensors on a single chip for applications in DNA sensing, medical diagnostics, environmental sensing, the food industry, neuronal sensing, and drug discovery

    Streamlining the Design and Use of Array Coils for In Vivo Magnetic Resonance Imaging of Small Animals

    Get PDF
    Small-animal models such as rodents and non-human primates play an important pre-clinical role in the study of human disease, with particular application to cancer, cardiovascular, and neuroscience models. To study these animal models, magnetic resonance imaging (MRI) is advantageous as a non-invasive technique due to its versatile contrast mechanisms, large and flexible field of view, and straightforward comparison/translation to human applications. However, signal-to-noise ratio (SNR) limits the practicality of achieving the high-resolution necessary to image the smaller features of animals in an amount of time suitable for in vivo animal MRI. In human MRI, it is standard to achieve an increase in SNR through the use of array coils; however, the design, construction, and use of array coils for animal imaging remains challenging due to copper-loss related issues from small array elements and design complexities of incorporating multiple elements and associated array hardware in a limited space. In this work, a streamlined strategy for animal coil array design, construction, and use is presented and the use for multiple animal models is demonstrated. New matching network circuits, materials, assembly techniques, body-restraining systems and integrated mechanical designs are demonstrated for streamlining high-resolution MRI of both anesthetized and awake animals. The increased SNR achieved with the arrays is shown to enable high-resolution in vivo imaging of mice and common marmosets with a reduced time for experimental setup

    Electromagnetic Interference and Compatibility

    Get PDF
    Recent progress in the fields of Electrical and Electronic Engineering has created new application scenarios and new Electromagnetic Compatibility (EMC) challenges, along with novel tools and methodologies to address them. This volume, which collects the contributions published in the “Electromagnetic Interference and Compatibility” Special Issue of MDPI Electronics, provides a vivid picture of current research trends and new developments in the rapidly evolving, broad area of EMC, including contributions on EMC issues in digital communications, power electronics, and analog integrated circuits and sensors, along with signal and power integrity and electromagnetic interference (EMI) suppression properties of materials
    corecore