8,614 research outputs found

    Paradigms for computational nucleic acid design

    Get PDF
    The design of DNA and RNA sequences is critical for many endeavors, from DNA nanotechnology, to PCR‐based applications, to DNA hybridization arrays. Results in the literature rely on a wide variety of design criteria adapted to the particular requirements of each application. Using an extensively studied thermodynamic model, we perform a detailed study of several criteria for designing sequences intended to adopt a target secondary structure. We conclude that superior design methods should explicitly implement both a positive design paradigm (optimize affinity for the target structure) and a negative design paradigm (optimize specificity for the target structure). The commonly used approaches of sequence symmetry minimization and minimum free‐energy satisfaction primarily implement negative design and can be strengthened by introducing a positive design component. Surprisingly, our findings hold for a wide range of secondary structures and are robust to modest perturbation of the thermodynamic parameters used for evaluating sequence quality, suggesting the feasibility and ongoing utility of a unified approach to nucleic acid design as parameter sets are refined further. Finally, we observe that designing for thermodynamic stability does not determine folding kinetics, emphasizing the opportunity for extending design criteria to target kinetic features of the energy landscape

    Refolding dynamics of stretched biopolymers upon force quench

    Full text link
    Single molecule force spectroscopy methods can be used to generate folding trajectories of biopolymers from arbitrary regions of the folding landscape. We illustrate the complexity of the folding kinetics and generic aspects of the collapse of RNA and proteins upon force quench, using simulations of an RNA hairpin and theory based on the de Gennes model for homopolymer collapse. The folding time, τF\tau_F, depends asymmetrically on δfS=fSfm\delta f_S = f_S - f_m and δfQ=fmfQ\delta f_Q = f_m - f_Q where fSf_S (fQf_Q) is the stretch (quench) force, and fmf_m is the transition mid-force of the RNA hairpin. In accord with experiments, the relaxation kinetics of the molecular extension, R(t)R(t), occurs in three stages: a rapid initial decrease in the extension is followed by a plateau, and finally an abrupt reduction in R(t)R(t) that occurs as the native state is approached. The duration of the plateau increases as λ=τQ/τF\lambda =\tau_Q/\tau_F decreases (where τQ\tau_Q is the time in which the force is reduced from fSf_S to fQf_Q). Variations in the mechanisms of force quench relaxation as λ\lambda is altered are reflected in the experimentally measurable time-dependent entropy, which is computed directly from the folding trajectories. An analytical solution of the de Gennes model under tension reproduces the multistage stage kinetics in R(t)R(t). The prediction that the initial stages of collapse should also be a generic feature of polymers is validated by simulation of the kinetics of toroid (globule) formation in semiflexible (flexible) homopolymers in poor solvents upon quenching the force from a fully stretched state. Our findings give a unified explanation for multiple disparate experimental observations of protein folding.Comment: 31 pages 11 figure

    Spectral rate theory for projected two-state kinetics

    Full text link
    Classical rate theories often fail in cases where the observable(s) or order parameter(s) used are poor reaction coordinates or the observed signal is deteriorated by noise, such that no clear separation between reactants and products is possible. Here, we present a general spectral two-state rate theory for ergodic dynamical systems in thermal equilibrium that explicitly takes into account how the system is observed. The theory allows the systematic estimation errors made by standard rate theories to be understood and quantified. We also elucidate the connection of spectral rate theory with the popular Markov state modeling (MSM) approach for molecular simulation studies. An optimal rate estimator is formulated that gives robust and unbiased results even for poor reaction coordinates and can be applied to both computer simulations and single-molecule experiments. No definition of a dividing surface is required. Another result of the theory is a model-free definition of the reaction coordinate quality (RCQ). The RCQ can be bounded from below by the directly computable observation quality (OQ), thus providing a measure allowing the RCQ to be optimized by tuning the experimental setup. Additionally, the respective partial probability distributions can be obtained for the reactant and product states along the observed order parameter, even when these strongly overlap. The effects of both filtering (averaging) and uncorrelated noise are also examined. The approach is demonstrated on numerical examples and experimental single-molecule force probe data of the p5ab RNA hairpin and the apo-myoglobin protein at low pH, here focusing on the case of two-state kinetics

    Complete RNA inverse folding: computational design of functional hammerhead ribozymes

    Full text link
    Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis-cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/.Comment: 17 pages, 2 tables, 7 figures, final version to appear in Nucleic Acids Researc

    Improving signal-to-noise resolution in single molecule experiments using molecular constructs with short handles

    Get PDF
    We investigate unfolding/folding force kinetics in DNA hairpins exhibiting two and three states with newly designed short dsDNA handles (29 bp) using optical tweezers. We show how the higher stiffness of the molecular setup moderately enhances the signal-to-noise ratio (SNR) in hopping experiments as compared to conventional long handles constructs (approximately 700 bp). The shorter construct results in a signal of higher SNR and slower folding/unfolding kinetics, thereby facilitating the detection of otherwise fast structural transitions. A novel analysis of the elastic properties of the molecular setup, based on high-bandwidth measurements of force fluctuations along the folded branch, reveals that the highest SNR that can be achieved with short handles is potentially limited by the marked reduction of the effective persistence length and stretch modulus of the short linker complex.Comment: Main paper: 20 pages and 6 figures. Supplementary Material: 25 page
    corecore