1,255 research outputs found

    Using Monte Carlo simulation to improve the performance of semivariograms for choosing the remote sensing imagery resolution for natural resource surveys: Case study on three counties in East, Central, and West China

    Get PDF
    © 2018 by the author. Semivariograms have been widely used in research to obtain optimal resolutions for ground features. To obtain the semivariogram curve and its attributes (range and sill), parameters including sample size (SS), maximum distance (MD), and group number (GN) have to be defined, as well as a mathematic model for fitting the curve. However, a clear guide on parameter setting and model selection is currently not available. In this study, a Monte Carlo simulation-based approach (MCS) is proposed to enhance the performance of semivariograms by optimizing the parameters, and case studies in three regions are conducted to determine the optimal resolution for natural resource surveys. Those parameters are optimized one by one through several rounds of MCS. The result shows that exponential model is better than sphere model; sample size has a positive relationship with R2, while the group number has a negative one; increasing the simulation number could improve the accuracy of estimation; and eventually the optimized parameters improved the performance of semivariogram. In case study, the average sizes for three general ground features (grassland, farmland, and forest) of three counties (Ansai, Changdu, and Taihe) in different geophysical locations of China were acquired and compared, and imagery with an appropriate resolution is recommended. The results show that the ground feature sizes acquired by means of MCS and optimized parameters in this study match well with real land cover patterns

    Monitoring global vegetation

    Get PDF
    An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth

    Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019

    Get PDF
    Unmanned aerial vehicles (UAVs) are new platforms that have been increasingly used in the last few years for forestry applications that benefit from the added value of flexibility, low cost, reliability, autonomy, and capability of timely provision of high-resolution data. The main adopted image-based technologies are RGB, multispectral, and thermal infrared. LiDAR sensors are becoming commonly used to improve the estimation of relevant plant traits. In comparison with other permanent ecosystems, forests are particularly affected by climatic changes due to the longevity of the trees, and the primary objective is the conservation and protection of forests. Nevertheless, forestry and agriculture involve the cultivation of renewable raw materials, with the difference that forestry is less tied to economic aspects and this is reflected by the delay in using new monitoring technologies. The main forestry applications are aimed toward inventory of resources, map diseases, species classification, fire monitoring, and spatial gap estimation. This Special Issue focuses on new technologies (UAV and sensors) and innovative data elaboration methodologies (object recognition and machine vision) for applications in forestry

    Long-Term Urban Forest Cover Change Detection with Object Based Image Analysis and Random Point Based Assessment

    Get PDF
    The urban forest provides various ecosystem services. Urban tree canopy cover measurement is the most basic quantification of ecosystem services. There have been few studies focused on long-term high-resolution urban forest change analysis. Further, few if any of these studies have compared object based image analysis (OBIA) and random point based assessment for determination of urban forest cover. The research objective is to define the urban forest canopy area, location, and height within the City of St Peter, MN boundary between 1938 and 2019 using both the OBIA and random point based methods with high spatial-resolution aerial photographic images and Light Detection and Ranging (LiDAR) data. One facet of this project is to examine the impact of natural disasters, such as the 1998 tornado, and tree diseases on the urban canopy cover area. LiDAR data was used to determine the height and canopy cover density of the urban forest canopy. The results were used to compare and contrast the methods, with verification via ground truthing. Results show that both methods gave comparable accurate results. The total canopy cover area remained consistent until 1995, then increased post-tornado. The location of canopy cover areas has changed throughout St Peter over time due to the tornado, the increase in size of the City of St Peter, and land use change within the City of St Peter. The canopy change due to diseases was not detectable

    Detecting forest cover and ecosystem service change using integrated approach of remotely sensed derived indices in the central districts of Uganda

    Get PDF
    Natural forests in Uganda have experienced both spatial and temporal modifications from different drivers which need to be monitored to assess the impacts of such changes on ecosystems and prevent related risks of reduction in ecosystem service benefits. Ground investigations may be complex because of dual ownership, whereas remote sensing techniques and GIS application enable a fast multi-temporal detection of changes in forest cover and offer a cost-effective option for inaccessible areas and their use to detect ecosystem service change. The overarching goal of this study was to use satellite measurements to study forest change and link it to ecosystem service benefit reduction (fresh water) in the study area using a representative sample of Landsat scenes, also testing whether the inclusion of ecosystem service benefits improves the classification. In this paper, an integrated approach of remotely derived indices was used together with post-classification comparison to detect forest cover and ecosystem service changes. Our contribution novelty is the ability to detect at multi-temporal scale private and central reserve forest cover decline along with ecosystem benefit reduction using remotely derived indices in the 20 year period (1986-2005). Change detection analysis showed that forest cover declined significantly in five sub-counties of Mpigi, than in Butambala by 5.99%, disturbed forest was 3%, farm land increased by 44%, grassland declined by 62.5% and light vegetation increased by63.6%. The two most affected areas also experienced fresh water reductions. For sustainable supply of ecosystem service benefits, resource managers must also involve private resource owners in the conservation effort.Keywords: Change detection, forest cover, ecosystem service, remotely sensed derived indices, central districts of Ugand

    Vegetation Dynamics Revealed by Remote Sensing and Its Feedback to Regional and Global Climate

    Get PDF
    This book focuses on some significant progress in vegetation dynamics and their response to climate change revealed by remote sensing data. The development of satellite remote sensing and its derived products offer fantastic opportunities to investigate vegetation changes and their feedback to regional and global climate systems. Special attention is given in the book to vegetation changes and their drivers, the effects of extreme climate events on vegetation, land surface albedo associated with vegetation changes, plant fingerprints, and vegetation dynamics in climate modeling

    Methodical basis for landscape structure analysis and monitoring: inclusion of ecotones and small landscape elements

    Get PDF
    Habitat variation is considered as an expression of biodiversity at landscape level in addition to genetic variation and species variation. Thus, effective methods for measuring habitat pattern at landscape level can be used to evaluate the status of biological conservation. However, the commonly used model (i.e. patch-corridor-matrix) for spatial pattern analysis has deficiencies. This model assumes discrete structures within the landscape without explicit consideration of “transitional zones” or “gradients” between patches. The transitional zones, often called “ecotones”, are dynamic and have a profound influence on adjacent ecosystems. Besides, this model takes landscape as a flat surface without consideration of the third spatial dimension (elevation). This will underestimate the patches’ size and perimeter as well as distances between patches especially in mountainous regions. Thus, the mosaic model needs to be adapted for more realistic and more precise representation of habitat pattern regarding to biodiversity assessment. Another part of information that has often been ignored is “small biotopes” inside patches (e.g. hedgerows, tree rows, copse, and scattered trees), which leads to within-patch heterogeneity being underestimated. The present work originates from the integration of the third spatial dimension in land-cover classification and landscape structure analysis. From the aspect of data processing, an integrated approach of Object-Based Image Analysis (OBIA) and Pixel-Based Image Analysis (PBIA) is developed and applied on multi-source data set (RapidEye images and Lidar data). At first, a general OBIA procedure is developed according to spectral object features based on RapidEye images for producing land-cover maps. Then, based on the classified maps, pixel-based algorithms are designed for detection of the small biotopes and ecotones using a Normalized Digital Surface Model (NDSM) which is derived from Lidar data. For describing habitat pattern under three-dimensional condition, several 3D-metrics (measuring e.g. landscape diversity, fragmentation/connectivity, and contrast) are proposed with spatial consideration of the ecological functions of small biotopes and ecotones. The proposed methodology is applied in two real-world examples in Germany and China. The results are twofold. First, it shows that the integrated approach of object-based and pixel-based image processing is effective for land-cover classification on different spatial scales. The overall classification accuracies of the main land-cover maps are 92 % in the German test site and 87 % in the Chinese test site. The developed Red Edge Vegetation Index (REVI) which is calculated from RapidEye images has been proved more efficient than the traditionally used Normalized Differenced Vegetation Index (NDVI) for vegetation classification, especially for the extraction of the forest mask. Using NDSM data, the third dimension is helpful for the identification of small biotopes and height gradient on forest boundary. The pixel-based algorithm so-called “buffering and shrinking” is developed for the detection of tree rows and ecotones on forest/field boundary. As a result the accuracy of detecting small biotopes is 80 % and four different types of ecotones are detected in the test site. Second, applications of 3D-metrics in two varied test sites show the frequently-used landscape diversity indices (i.e. Shannon’s diversity (SHDI) and Simpson’s diversity (SIDI)) are not sufficient for describing the habitats diversity, as they quantify only the habitats composition without consideration on habitats spatial distribution. The modified 3D-version of Effective Mesh Size (MESH) that takes ecotones into account leads to a realistic quantification of habitat fragmentation. In addition, two elevation-based contrast indices (i.e. Area-Weighted Edge Contrast (AWEC) and Total Edge Contrast Index (TECI)) are used as supplement to fragmentation metrics. Both ecotones and small biotopes are incorporated into the contrast metrics to take into account their edge effect in habitat pattern. This can be considered as a further step after fragmentation analysis with additional consideration of the edge permeability in the landscape structure analysis. Furthermore, a vector-based algorithm called “multi-buffer” approach is suggested for analyzing ecological networks based on land-cover maps. It considers small biotopes as stepping stones to establish connections between patches. Then, corresponding metrics (e.g. Effective Connected Mesh Size (ECMS)) are proposed based on the ecological networks. The network analysis shows the response of habitat connectivity to different dispersal distances in a simple way. Those connections through stepping stones act as ecological indicators of the “health” of the system, indicating the interpatch communications among habitats. In summary, it can be stated that habitat diversity is an essential level of biodiversity and methods for quantifying habitat pattern need to be improved and adapted to meet the demands for landscape monitoring and biodiversity conservation. The approaches presented in this work serve as possible methodical solution for fine-scale landscape structure analysis and function as “stepping stones” for further methodical developments to gain more insights into the habitat pattern.Die Lebensraumvielfalt ist neben der genetischen Vielfalt und der Artenvielfalt eine wesentliche Ebene der Biodiversität. Da diese Ebenen miteinander verknüpft sind, können Methoden zur Messung der Muster von Lebensräumen auf Landschaftsebene erfolgreich angewandt werden, um den Zustand der Biodiversität zu bewerten. Das zur räumlichen Musteranalyse auf Landschaftsebene häufig verwendete Patch-Korridor-Matrix-Modell weist allerdings einige Defizite auf. Dieses Modell geht von diskreten Strukturen in der Landschaft aus, ohne explizite Berücksichtigung von „Übergangszonen“ oder „Gradienten“ zwischen den einzelnen Landschaftselementen („Patches“). Diese Übergangszonen, welche auch als „Ökotone“ bezeichnet werden, sind dynamisch und haben einen starken Einfluss auf benachbarte Ökosysteme. Außerdem wird die Landschaft in diesem Modell als ebene Fläche ohne Berücksichtigung der dritten räumlichen Dimension (Höhe) betrachtet. Das führt dazu, dass die Flächengrößen und Umfänge der Patches sowie Distanzen zwischen den Patches besonders in reliefreichen Regionen unterschätzt werden. Daher muss das Patch-Korridor-Matrix-Modell für eine realistische und präzise Darstellung der Lebensraummuster für die Bewertung der biologischen Vielfalt angepasst werden. Ein weiterer Teil der Informationen, die häufig in Untersuchungen ignoriert werden, sind „Kleinbiotope“ innerhalb größerer Patches (z. B. Feldhecken, Baumreihen, Feldgehölze oder Einzelbäume). Dadurch wird die Heterogenität innerhalb von Patches unterschätzt. Die vorliegende Arbeit basiert auf der Integration der dritten räumlichen Dimension in die Landbedeckungsklassifikation und die Landschaftsstrukturanalyse. Mit Methoden der räumlichen Datenverarbeitung wurde ein integrierter Ansatz von objektbasierter Bildanalyse (OBIA) und pixelbasierter Bildanalyse (PBIA) entwickelt und auf einen Datensatz aus verschiedenen Quellen (RapidEye-Satellitenbilder und Lidar-Daten) angewendet. Dazu wird zunächst ein OBIA-Verfahren für die Ableitung von Hauptlandbedeckungsklassen entsprechend spektraler Objekteigenschaften basierend auf RapidEye-Bilddaten angewandt. Anschließend wurde basierend auf den klassifizierten Karten, ein pixelbasierter Algorithmus für die Erkennung von kleinen Biotopen und Ökotonen mit Hilfe eines normalisierten digitalen Oberflächenmodells (NDSM), welches das aus LIDAR-Daten abgeleitet wurde, entwickelt. Zur Beschreibung der dreidimensionalen Charakteristika der Lebensraummuster unter der räumlichen Betrachtung der ökologischen Funktionen von kleinen Biotopen und Ökotonen, werden mehrere 3D-Maße (z. B. Maße zur landschaftlichen Vielfalt, zur Fragmentierung bzw. Konnektivität und zum Kontrast) vorgeschlagen. Die vorgeschlagene Methodik wird an zwei realen Beispielen in Deutschland und China angewandt. Die Ergebnisse zeigen zweierlei. Erstens zeigt es sich, dass der integrierte Ansatz der objektbasierten und pixelbasierten Bildverarbeitung effektiv für die Landbedeckungsklassifikation auf unterschiedlichen räumlichen Skalen ist. Die Klassifikationsgüte insgesamt für die Hauptlandbedeckungstypen beträgt 92 % im deutschen und 87 % im chinesischen Testgebiet. Der eigens entwickelte Red Edge-Vegetationsindex (REVI), der sich aus RapidEye-Bilddaten berechnen lässt, erwies sich für die Vegetationsklassifizierung als effizienter verglichen mit dem traditionell verwendeten Normalized Differenced Vegetation Index (NDVI), insbesondere für die Gewinnung der Waldmaske. Im Rahmen der Verwendung von NDSM-Daten erwies sich die dritte Dimension als hilfreich für die Identifizierung von kleinen Biotopen und dem Höhengradienten, beispielsweise an der Wald/Feld-Grenze. Für den Nachweis von Baumreihen und Ökotonen an der Wald/Feld-Grenze wurde der sogenannte pixelbasierte Algorithmus „Pufferung und Schrumpfung“ entwickelt. Im Ergebnis konnten kleine Biotope mit einer Genauigkeit von 80 % und vier verschiedene Ökotontypen im Testgebiet detektiert werden. Zweitens zeigen die Ergebnisse der Anwendung der 3D-Maße in den zwei unterschiedlichen Testgebieten, dass die häufig genutzten Landschaftsstrukturmaße Shannon-Diversität (SHDI) und Simpson-Diversität (SIDI) nicht ausreichend für die Beschreibung der Lebensraumvielfalt sind. Sie quantifizieren lediglich die Zusammensetzung der Lebensräume, ohne Berücksichtigung der räumlichen Verteilung und Anordnung. Eine modifizierte 3D-Version der Effektiven Maschenweite (MESH), welche die Ökotone integriert, führt zu einer realistischen Quantifizierung der Fragmentierung von Lebensräumen. Darüber hinaus wurden zwei höhenbasierte Kontrastindizes, der flächengewichtete Kantenkontrast (AWEC) und der Gesamt-Kantenkontrast Index (TECI), als Ergänzung der Fragmentierungsmaße entwickelt. Sowohl Ökotone als auch Kleinbiotope wurden in den Berechnungen der Kontrastmaße integriert, um deren Randeffekte im Lebensraummuster zu berücksichtigen. Damit kann als ein weiterer Schritt nach der Fragmentierungsanalyse die Randdurchlässigkeit zusätzlich in die Landschaftsstrukturanalyse einbezogen werden. Außerdem wird ein vektorbasierter Algorithmus namens „Multi-Puffer“-Ansatz für die Analyse von ökologischen Netzwerken auf Basis von Landbedeckungskarten vorgeschlagen. Er berücksichtigt Kleinbiotope als Trittsteine, um Verbindungen zwischen Patches herzustellen. Weiterhin werden entsprechende Maße, z. B. die Effective Connected Mesh Size (ECMS), für die Analyse der ökologischen Netzwerke vorgeschlagen. Diese zeigen die Auswirkungen unterschiedlicher angenommener Ausbreitungsdistanzen von Organismen bei der Ableitung von Biotopverbundnetzen in einfacher Weise. Diese Verbindungen zwischen Lebensräumen über Trittsteine hinweg dienen als ökologische Indikatoren für den „gesunden Zustand“ des Systems und zeigen die gegenseitigen Verbindungen zwischen den Lebensräumen. Zusammenfassend kann gesagt werden, dass die Vielfalt der Lebensräume eine wesentliche Ebene der Biodiversität ist. Die Methoden zur Quantifizierung der Lebensraummuster müssen verbessert und angepasst werden, um den Anforderungen an ein Landschaftsmonitoring und die Erhaltung der biologischen Vielfalt gerecht zu werden. Die in dieser Arbeit vorgestellten Ansätze dienen als mögliche methodische Lösung für eine feinteilige Landschaftsstrukturanalyse und fungieren als ein „Trittsteine” auf dem Weg zu weiteren methodischen Entwicklungen für einen tieferen Einblick in die Muster von Lebensräumen

    Multisource Remote Sensing based Impervious Surface Mapping

    Full text link
    Impervious surface (IS) not only serves as a key indicator of urbanization, but also affects the micro-ecosystem. Therefore, it is essential to monitor IS distribution timely and accurately. Remote sensing is an effective approach as it can provide straightforward and consistent information over large area with low cost. This thesis integrates multi-source remote sensing data to interpretate urban patterns and provide more reliable IS mapping results. Registration of optical daytime and nighttime lights (NTL) data is developed in the first contribution. An impervious surface based optical-to-NTL image registration algorithm with iterative blooming effect reduction (IS_iBER) algorithm is proposed. This coarse-to-fine procedure investigates the correlation between optical and NTL features. The iterative registration and blooming effect reduction method obtains precise matching results and reduce the spatial extension of NTL. Considering the spatial transitional nature of urban-rural fringes (URF) areas, the second study proposed approach for URF delineation, namely optical and nighttime lights (NTL) data based multi-scale URF (msON_URF).The landscape heterogeneity and development vitality derived from optical and NTL features are analyzed at a series of scales to illustrate the urban-URF-rural pattern. Results illustrate that msON_URF is effective and practical for not only concentric, but also polycentric urban patterns. The third study proposes a nighttime light adjusted impervious surface index (NAISI) to detect IS area. Parallel to baseline subtraction approaches, NAISI takes advantage of features, rather than spectral band information to map IS. NAISI makes the most of independence between NTL-ISS and pervious surface to address the high spectral similarity between IS and bare soil in optical image. An optical and NTL based spectral mixture analysis (ON_SMA) is proposed to achieve sub-pixel IS mapping result in the fourth study. It integrates characteristics of optical and NTL imagery to adaptively select local endmembers. Results illustrate the proposed method yields effective improvement and highlight the potential of NTL data in IS mapping. In the fifth study, GA-SVM IS mapping algorithm is investigated with introduction of the achieved urban-URF-rural spatial structure. The combination of optical, NTL and SAR imagery is discussed. GA is implemented for feature selection and parameter optimization in each urban scenario
    • …
    corecore