1,582 research outputs found

    Machine learning algorithms for structured decision making

    Get PDF

    Structured output prediction for semantic perception in autonomous vehicles

    Get PDF
    A key challenge in the realization of autonomous vehicles is the machine's ability to perceive its surrounding environment. This task is tackled through a model that partitions vehicle camera input into distinct semantic classes, by taking into account visual contextual cues. The use of structured machine learning models is investigated, which not only allow for complex input, but also arbitrarily structured output. Towards this goal, an outdoor road scene dataset is constructed with accompanying fine-grained image labelings. For coherent segmentation, a structured predictor is modeled to encode label distributions conditioned on the input images. After optimizing this model through max-margin learning, based on an ontological loss function, efficient classification is realized via graph cuts inference using alpha-expansion. Both quantitative and qualitative analyses demonstrate that by taking into account contextual relations between pixel segmentation regions within a second-degree neighborhood, spurious label assignments are filtered out, leading to highly accurate semantic segmentations for outdoor scenes

    Lidar-based Obstacle Detection and Recognition for Autonomous Agricultural Vehicles

    Get PDF
    Today, agricultural vehicles are available that can drive autonomously and follow exact route plans more precisely than human operators. Combined with advancements in precision agriculture, autonomous agricultural robots can reduce manual labor, improve workflow, and optimize yield. However, as of today, human operators are still required for monitoring the environment and acting upon potential obstacles in front of the vehicle. To eliminate this need, safety must be ensured by accurate and reliable obstacle detection and avoidance systems.In this thesis, lidar-based obstacle detection and recognition in agricultural environments has been investigated. A rotating multi-beam lidar generating 3D point clouds was used for point-wise classification of agricultural scenes, while multi-modal fusion with cameras and radar was used to increase performance and robustness. Two research perception platforms were presented and used for data acquisition. The proposed methods were all evaluated on recorded datasets that represented a wide range of realistic agricultural environments and included both static and dynamic obstacles.For 3D point cloud classification, two methods were proposed for handling density variations during feature extraction. One method outperformed a frequently used generic 3D feature descriptor, whereas the other method showed promising preliminary results using deep learning on 2D range images. For multi-modal fusion, four methods were proposed for combining lidar with color camera, thermal camera, and radar. Gradual improvements in classification accuracy were seen, as spatial, temporal, and multi-modal relationships were introduced in the models. Finally, occupancy grid mapping was used to fuse and map detections globally, and runtime obstacle detection was applied on mapped detections along the vehicle path, thus simulating an actual traversal.The proposed methods serve as a first step towards full autonomy for agricultural vehicles. The study has thus shown that recent advancements in autonomous driving can be transferred to the agricultural domain, when accurate distinctions are made between obstacles and processable vegetation. Future research in the domain has further been facilitated with the release of the multi-modal obstacle dataset, FieldSAFE

    COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle using Deep Reinforcement Learning

    Full text link
    Path Following and Collision Avoidance, be it for unmanned surface vessels or other autonomous vehicles, are two fundamental guidance problems in robotics. For many decades, they have been subject to academic study, leading to a vast number of proposed approaches. However, they have mostly been treated as separate problems, and have typically relied on non-linear first-principles models with parameters that can only be determined experimentally. The rise of Deep Reinforcement Learning (DRL) in recent years suggests an alternative approach: end-to-end learning of the optimal guidance policy from scratch by means of a trial-and-error based approach. In this article, we explore the potential of Proximal Policy Optimization (PPO), a DRL algorithm with demonstrated state-of-the-art performance on Continuous Control tasks, when applied to the dual-objective problem of controlling an underactuated Autonomous Surface Vehicle in a COLREGs compliant manner such that it follows an a priori known desired path while avoiding collisions with other vessels along the way. Based on high-fidelity elevation and AIS tracking data from the Trondheim Fjord, an inlet of the Norwegian sea, we evaluate the trained agent's performance in challenging, dynamic real-world scenarios where the ultimate success of the agent rests upon its ability to navigate non-uniform marine terrain while handling challenging, but realistic vessel encounters

    Multiagent Bidirectionally-Coordinated Nets: Emergence of Human-level Coordination in Learning to Play StarCraft Combat Games

    Get PDF
    Many artificial intelligence (AI) applications often require multiple intelligent agents to work in a collaborative effort. Efficient learning for intra-agent communication and coordination is an indispensable step towards general AI. In this paper, we take StarCraft combat game as a case study, where the task is to coordinate multiple agents as a team to defeat their enemies. To maintain a scalable yet effective communication protocol, we introduce a Multiagent Bidirectionally-Coordinated Network (BiCNet ['bIknet]) with a vectorised extension of actor-critic formulation. We show that BiCNet can handle different types of combats with arbitrary numbers of AI agents for both sides. Our analysis demonstrates that without any supervisions such as human demonstrations or labelled data, BiCNet could learn various types of advanced coordination strategies that have been commonly used by experienced game players. In our experiments, we evaluate our approach against multiple baselines under different scenarios; it shows state-of-the-art performance, and possesses potential values for large-scale real-world applications.Comment: 10 pages, 10 figures. Previously as title: "Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games", Mar 201

    A cooperative active perception approach for swarm robotics

    Get PDF
    More than half a century after modern robotics first emerged, we still face a landscape in which most of the work done by robots is predetermined, rather than autonomous. A strong understanding of the environment is one of the key factors for autonomy, enabling the robots to make correct decisions based on the environment surrounding them. Classic methods for obtaining robotic controllers are based on manual specification, but become less trivial as the complexity scales. Artificial intelligence methods like evolutionary algorithms were introduced to synthesize robotic controllers by optimizing an artificial neural network to a given fitness function that measures the robots’ performance to solve a predetermined task. In this work, a novel approach to swarm robotics environment perception is studied, with a behavior model based on the cooperative identification of objects that fly around an environment, followed by an action based on the result of the identification process. Controllers are obtained via evolutionary methods. Results show a controller with a high identification and correct decision rates. The work is followed by a study on scaling up that approach to multiple environments. Experiments are done on terrain, marine and aerial environments, as well as on ideal, noisy and hybrid scenarios. In the hybrid scenario, different evolution samples are done in different environments. Results show the way these controllers are able to adapt to each scenario and conclude a hybrid evolution is the best fit to generate a more robust and environment independent controller to solve our task.Mais de um século após a robótica moderna ter surgido, ainda nos deparamos com um cenário onde a maioria do trabalho executado por robôs é pré-determinado, ao invés de autónomo. Uma forte compreensão do ambiente é um dos pontos chave para a autonomia, permitindo aos robôs tomarem decisões corretas baseadas no ambiente que os rodeia. Abordagens mais clássicas para obter controladores de robótica são baseadas na especificação manual, mas tornam-se menos apropriadas à medida que a complexidade aumenta. Métodos de inteligência artificial como algoritmos evolucionários foram introduzidos para obter controladores de robótica através da otimização de uma rede neuronal artificial para uma função de fitness que mede a aptidão dos robôs para resolver uma determinada tarefa. Neste trabalho, é apresentada uma nova abordagem para perceção do ambiente por um enxame de robôs, com um modelo de comportamento baseado na identificação cooperativa de objetos que circulam no ambiente, seguida de uma atuação baseada no resultado da identificação. Os controladores são obtidos através de métodos evolucionários. Os resultados apesentam um controlador com uma alta taxa de identificação e de decisão. Segue-se um estudo sobre o escalonamento da abordagem a múltiplos ambientes. São feitas experiencias num ambiente terrestre, marinho e aéreo, bem como num contexto ideal, ruidoso e híbrido. No contexto híbrido, diferentes samples da evolução ocorrem em diferentes ambientes. Os resultados demonstram a forma como cada controlador se adapta aos restantes ambientes e concluem que a evolução híbrida foi a mais capaz de gerar um controlador robusto e transversal aos diferentes ambientes. Palavras-chave: Robótica evolucionária, Sistemas multi-robô, Cooperação, Perceção, Identificação de objetos, Inteligência artificial, Aprendizagem automática, Redes neuronais, Múltiplos ambientes
    corecore