202,016 research outputs found

    Frequent lineage-specific substitution rate changes support an episodic model for protein evolution

    Get PDF
    Since the inception of the molecular clock model for sequence evolution, the investigation of protein divergence has revolved around the question of a more or less constant change of amino acid sequences, with specific overall rates for each family. Although anomalies in clock-like divergence are well known, the assumption of a constant decay rate for a given protein family is usually taken as the null model for protein evolution. However, systematic tests of this null model at a genome-wide scale have lagged behind, despite the databases’ enormous growth. We focus here on divergence rate comparisons between very closely related lineages since this allows clear orthology assignments by synteny and reliable alignments, which are crucial for determining substitution rate changes. We generated a high-confidence dataset of syntenic orthologs from four ape species, including humans. We find that despite the appearance of an overall clock-like substitution pattern, several hundred protein families show lineage-specific acceleration and deceleration in divergence rates, or combinations of both in different lineages. Hence, our analysis uncovers a rather dynamic history of substitution rate changes, even between these closely related lineages, implying that one should expect that a large fraction of proteins will have had a history of episodic rate changes in deeper phylogenies. Furthermore, each of the lineages has a separate set of particularly fast diverging proteins. The genes with the highest percentage of branch-specific substitutions are ADCYAP1 in the human lineage (9.7%), CALU in chimpanzees (7.1%), SLC39A14 in the internal branch leading to humans and chimpanzees (4.1%), RNF128 in gorillas (9%), and S100Z in gibbons (15.2%). The mutational pattern in ADCYAP1 suggests a biased mutation process, possibly through asymmetric gene conversion effects. We conclude that a null model of constant change can be problematic for predicting the evolutionary trajectories of individual proteins

    Family Size Evolution in Drosophila Chemosensory Gene Families: A Comparative Analysis with a Critical Appraisal of Methods

    Get PDF
    Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila-the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families-to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia's gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process

    Natural selection and functional diversification of the epidermal growth factor receptorEGFR family in vertebrates

    Get PDF
    AbstractBackgroundGenes that have been subject to adaptive evolution can produce varying degrees of pathology or differing symptomatology. ErbB family receptor activation will initiate a number of downstream signaling pathways, such as mitogen-activated protein kinase (MAPK), activator of transcription (STAT), the modulation of calcium channels, and so on, all of which lead to aggressive tumor behavior. However, the evolutionary mechanisms operating in the retention of ErbB family genes and the changes in selection pressures are not clear.ResultsSixty-two full-length cDNA sequences from 27 vertebrate species were extracted from the UniProt protein database, NCBI's GenBank and the Ensembl database. The result of phylogenetic analysis showed that the four ErbB family members in vertebrates might be formed by gene duplication. In order to determine the mode of evolution in vertebrates, selection analysis and functional divergence analysis were combined to explain the relationship of the site-specific evolution and functional divergence in the vertebrate ErbB family. Our results indicate that the acceleration of asymmetric evolutionary rates and purifying selection together were the main force for the production of ErbBs, and positive selections were detected in the ErbB family.ConclusionAn evolutional phylogeny of 27 vertebrates was presented in our study; the tree showed that the genes have evolved through duplications followed by purifying selection, except for seven sites, which evolved by positive selection. There was one common site with positive selection and functional divergence. In the process of functional differentiation evolving through gene duplication, relaxed selection may play an important part

    Constraints on the evolution of toxin-resistant Na,K-ATPases have limited dependence on sequence divergence

    Get PDF
    A growing body of theoretical and experimental evidence suggests that intramolecular epistasis is a major determinant of rates and patterns of protein evolution and imposes a substantial constraint on the evolution of novel protein functions. Here, we examine the role of intramolecular epistasis in the recurrent evolution of resistance to cardiotonic steroids (CTS) across tetrapods, which occurs via specific amino acid substitutions to the α-subunit family of Na,K-ATPases (ATP1A). After identifying a series of recurrent substitutions at two key sites of ATP1A that are predicted to confer CTS resistance in diverse tetrapods, we then performed protein engineering experiments to test the functional consequences of introducing these substitutions onto divergent species backgrounds. In line with previous results, we find that substitutions at these sites can have substantial background-dependent effects on CTS resistance. Globally, however, these substitutions also have pleiotropic effects that are consistent with additive rather than background-dependent effects. Moreover, the magnitude of a substitution’s effect on activity does not depend on the overall extent of ATP1A sequence divergence between species. Our results suggest that epistatic constraints on the evolution of CTS-resistant forms of Na,K-ATPase likely depend on a small number of sites, with little dependence on overall levels of protein divergence. We propose that dependence on a limited number sites may account for the observation of convergent CTS resistance substitutions observed among taxa with highly divergent Na,K-ATPases (See S1 Text for Spanish translation)

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity
    corecore