56 research outputs found

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    ARCH-COMP22 category report: Artificial intelligence and neural network control systems (AINNCS) for continuous and hybrid systems plants

    Get PDF
    This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with artificial intelligence (AI) components. Specifically, machine learning (ML) components in cyber-physical systems (CPS), such as feedforward neural networks used as feedback controllers in closed-loop systems are considered, which is a class of systems classically known as intelligent control systems, or in more modern and specific terms, neural network control systems (NNCS). We more broadly refer to this category as AI and NNCS (AINNCS). The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2022. In the fourth edition of this AINNCS category at ARCH-COMP, four tools have been applied to solve 10 different benchmark problems. There are two new participants: CORA and POLAR, and two previous participants: JuliaReach and NNV. The goal of this report is to be a snapshot of the current landscape of tools and the types of benchmarks for which these tools are suited. The results of this iteration significantly outperform those of any previous year, demonstrating the continuous advancement of this community in the past decade.</jats:p

    Verification Guided Refinement of Flight Safety Assessment and Management System for Takeoff

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140668/1/1.i010408.pd

    Guaranteed Verification of Dynamic Systems

    Get PDF
    Diese Arbeit beschreibt einen neuen Spezifikations- und Verifikationsansatz für dynamische Systeme. Der neue Ansatz ermöglicht dabei Ergebnisse, die per Definition frei von Fehlern 2. Art sind. Dies bedeutet, dass das Ergebnis der Verifikation keine versteckten Fehler enthalten kann. Somit können zuverlässige Ergebnisse für die Analyse von sicherheitskritischen Systemen generiert werden. Dazu wird ein neues Verständnis von mengenbasierter Konsistenz dynamischer Systeme mit einer gegebenen Spezifikation eingeführt. Dieses basiert auf der Verwendung von Kaucher Intervall Arithmetik zur Einschließung von Messdaten. Konsistenz wird anhand der vereinigten Lösungsmenge der Kaucher Arithmetik definiert. Dies führt zu mathematisch garantierten Ergebnissen. Die resultierende Methode kann das spezifizierte Verhalten eines dynamischen System auch im Falle von Rauschen und Sensorungenauigkeiten anhand von Messdaten verifizieren. Die mathematische Beweisbarkeit der Konsistenz wird für eine große Klasse von Systemen gezeigt. Diese beinhalten zeitinvariante, intervallartige und hybride Systeme, wobei letztere auch zur Beschreibung von Nichtlinearitäten verwendet werden können. Darüber hinaus werden zahlreiche Erweiterungen dargestellt. Diese führen bis hin zu einem neuartigen iterativen Identifikations- und Segmentierungsverfahren für hybride Systeme. Dieses ermöglicht die Verfikation hybrider Systeme auch ohne Wissen über Schaltzeitpunkte. Die entwickelten Verfahren können darüber hinaus zur Diagnose von dynamischen Systemen verwendet werden, falls eine ausreichend schnelle Berechnung der Ergebnisse möglich ist. Die Verfahren werden erfolgreich auf eine beispielhafte Variation verschiedener Tanksysteme angewendet. Die neuen Theorien, Methoden und Algortihmen dieser Arbeit bilden die Grundlage für eine zuverlässige Analyse von hochautomatisierten sicherheitskritischen Systemen

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    corecore