1,078 research outputs found

    False-name-Proof Combinatorial Auction Mechanisms

    Get PDF
    In Internet auctions, it is easy for a bidder to submit multiple bids under multiple identifiers (e.g., multiple e-mail addresses). If only one good is sold, a bidder cannot make any additional profit by using multiple bids. However, in combinatorial auctions, where multiple goods are sold simultaneously, submitting multiple bids under fictitious names can be profitable. A bid made under a fictitious name is called a {em false-name bid}. In this talk, I describe the summary of existing works and open problems on false-name bids

    VCG Under Sybil (False-name) Attacks -- a Bayesian Analysis

    Full text link
    VCG is a classical combinatorial auction that maximizes social welfare. However, while the standard single-item Vickrey auction is false-name-proof, a major failure of multi-item VCG is its vulnerability to false-name attacks. This occurs already in the natural bare minimum model in which there are two identical items and bidders are single-minded. Previous solutions to this challenge focused on developing alternative mechanisms that compromise social welfare. We re-visit the VCG auction vulnerability and consider the bidder behavior in Bayesian settings. In service of that we introduce a novel notion, termed the granularity threshold, that characterizes VCG Bayesian resilience to false-name attacks as a function of the bidder type distribution. Using this notion we show a large class of cases in which VCG indeed obtains Bayesian resilience for the two-item single-minded setting.Comment: This is an extended version of an article to appear in AAAI-2020. Supporting code for generating the article's figures can be found at https://github.com/yotam-gafni/vcg_bayesian_fn

    False-name-proof combinatorial auction design via single-minded decomposition

    No full text
    This paper proposes a new approach to building false-name-proof (FNP) combinatorial auctions from those that are FNP only with single-minded bidders, each of whom requires only one particular bundle. Under this approach, a general bidder is decomposed into a set of single-minded bidders, and after the decomposition the price and the allocation are determined by the FNP auctions for single-minded bidders. We first show that the auctions we get with the single-minded decomposition are FNP if those for single-minded bidders satisfy a condition called PIA. We then show that another condition, weaker than PIA, is necessary for the decomposition to build FNP auctions. To close the gap between the two conditions, we have found another sufficient condition weaker than PIA for the decomposition to produce strategy-proof mechanisms. Furthermore, we demonstrate that once we have PIA, the mechanisms created by the decomposition actually satisfy a stronger version of false-name-proofness, called false-name-proofness with withdrawal

    Truthful approximation mechanisms for restricted combinatorial auctions

    Get PDF
    When attempting to design a truthful mechanism for a computationally hard problem such as combinatorial auctions, one is faced with the problem that most efficiently computable heuristics can not be embedded in any truthful mechanism (e.g. VCG-like payment rules will not ensure truthfulness). We develop a set of techniques that allow constructing efficiently computable truthful mechanisms for combinatorial auctions in the special case where each bidder desires a specific known subset of items and only the valuation is unknown by the mechanism (the single parameter case). For this case we extend the work of Lehmann, O'Callaghan, and Shoham, who presented greedy heuristics. We show how to use If-Then-Else constructs, perform a partial search, and use the LP relaxation. We apply these techniques for several canonical types of combinatorial auctions, obtaining truthful mechanisms with provable approximation ratios

    Limited Verification of Identities to Induce False-Name-Proofness

    Get PDF
    In open, anonymous environments such as the Internet, mechanism design is complicated by the fact that a single agent can participate in the mechanism under multiple identifiers. One way to address this is to design false-name-proof mechanisms, which choose the outcome in such a way that agents have no incentive to use more than one identifier. Unfortunately, there are inherent limitations on what can be achieved with false-name-proof mechanisms, and at least in some cases, these limitations are crippling. An alternative approach is to verify the identities of all agents. This imposes significant overhead and removes any benefits from anonymity. In this paper, we propose a middle ground. Based on the reported preferences, we check, for various subsets of the reports, whether the reports in the subset were all submitted by different agents. If they were not, then we discard some of them. We characterize when such a limited verification protocol induces false-name-proofness for a mechanism, that is, when the combination of the mechanism and the verification protocol gives the agents no incentive to use multiple identi- fiers. This characterization leads to various optimization problems for minimizing verification effort. We study how to solve these problems. Throughout, we use combinatorial auctions (using the Clarke mechanism) and majority voting as examples

    Online Ascending Auctions for Gradually Expiring Items

    Get PDF
    In this paper we consider online auction mechanisms for the allocation of M items that are identical to each other except for the fact that they have different expiration times, and each item must be allocated before it expires. Players arrive at different times, and wish to buy one item before their deadline. The main difficulty is that players act "selfishly" and may mis-report their values, deadlines, or arrival times. We begin by showing that the usual notion of truthfulness (where players follow a single dominant strategy) cannot be used in this case, since any (deterministic) truthful auction cannot obtain better than an M-approximation of the social welfare. Therefore, instead of designing auctions in which players should follow a single strategy, we design two auctions that perform well under a wide class of selfish, "semi-myopic", strategies. For every combination of such strategies, the auction is associated with a different algorithm, and so we have a family of "semi-myopic" algorithms. We show that any algorithm in this family obtains a 3-approximation, and by this conclude that our auctions will perform well under any choice of such semi-myopic behaviors. We next turn to provide a game-theoretic justification for acting in such a semi-myopic way. We suggest a new notion of "Set-Nash" equilibrium, where we cannot pin-point a single best-response strategy, but rather only a set of possible best-response strategies. We show that our auctions have a Set-Nash equilibrium which is all semi-myopic, hence guarantees a 3-approximation. We believe that this notion is of independent interest
    • …
    corecore